„Die Struktur des zweidimensionalen Glases gibt uns wichtige Hinweise auf den Aufbau eines dreidimensionalen Glases“, sagt Markus Heyde. Und das vor allem, weil die völlig ebene Glasschicht eine Art Fenster bildet, das erstmals den Blick auf seine eigene Struktur frei gibt. Denn in ebenen Oberflächen lassen sich die Positionen der einzelnen Atome bestimmen, auch wenn die Struktur amorph ist.
In einer ersten Studie tasteten die Wissenschaftler amorphes Siliziumdioxid mit einem Rastertunnelmikroskop ab, das ihnen verrät, wo die Sauerstoffatome sitzen. Dabei offenbarten sich bereits die unregelmäßigen Maschen des Netzes, das William Zachariasen als gläserne Struktur vorgeschlagen hatte. In zwei weiteren Arbeiteten fuhren die Forscher die Oberflächen ihrer Proben zusätzlich mit einem kontaktlosen Rasterkraftmikroskop ab, das die Siliziumatome aufspürt. So erhielten sie ein genaues Bild aller Atompositionen im zweidimensionalen Glas.
Kenntnis der Glasstruktur hilft bei Katalysatorentwicklung
In ihren Studien untersuchten die Wissenschaftler zudem den Übergang zwischen einer amorphen und einer kristallinen Siliziumdioxid-Schicht. „Dabei haben wir festgestellt, dass an der Grenze neben den Sechsecken zunächst vor allem Fünf- und Siebenecke auftreten – also die ähnlichsten Ringe“, sagt Markus Heyde. Je weiter sie den Blick ihres Mikroskops vom kristallinen in den amorphen Bereich schweifen ließen, desto stärker wichen die Ringgrößen von der kristallinen Sechseck-Struktur ab.
Jetzt, da die Forscher einen glasklaren Blick für jedes einzelne Atom in einer amorphen Siliziumdioxid-Schicht haben, wollen sie untersuchen, wie sich die verschiedenen Strukturelemente verhalten, wenn fremde Atome oder Moleküle auf der Glasoberfläche landen. Heften sie sich bevorzugt an Ringe einer bestimmten Größe? „Diese Frage interessiert uns, weil solche Absorptionsprozesse bei der heterogenen Katalyse wichtig sind“, erklärt Hans-Joachim Freund, Direktor am Fritz-Haber-Institut. Diese Frage wollen die Forscher aber auch beantworten, um zu klären, ob sich ihr zweidimensionales Siliziumdioxid als eine Modellsubstanz für einen technisch eingesetzten Katalysatorträger eignet. Seine zwei Atomlagen bilden ein Netz zusammenhängender Käfige mit unterschiedlich großen Öffnungen, die als eine Art atomares Sieb dienen können. Möglicherweise lassen sich aber auch unterschiedliche Elemente selektive in diesen Käfigstrukturen speichern.
-> Quelle: www.mpg.de