Eine Salve von Photoelektronen enthüllt das Pulsprofil
Für ihre Messungen haben die Wissenschaftler die in der Attosekundenphysik (eine Attosekunde ist eine tausendstel Femtosekunde) angewandte Methode des sogenannten Photoelektron-Streaking adaptiert. Damit lassen sich Profile zeitlich variierender Lichtsignale aufzeichnen. Dank der enormen Intensität der FEL-Blitze konnten die Forscher diese Messungen bei FLASH sogar von einzelnen Pulsen durchführen. Dafür wurden die Röntgenblitze auf dem Weg zu ihrem Ziel durch Neon-Gas geschossen. Jeder Puls erzeugt eine Salve von Photoelektronen, die aus dem Edelgas herausgeschlagen werden. Das zeitliche Profil dieser Photoelektronen entspricht demjenigen des Pulses.
Mit einem elektromagnetischen Terahertz-Feld werden die Photoelektronen beschleunigt oder abgebremst – je nachdem, zu welchem Zeitpunkt sie emittiert wurden. Das wird mit Hilfe eines Flugzeit-Spektrographen aufgezeichnet. Sofern die genaue Form des Terahertz-Pulses bekannt ist, liefert die Kombination dieser Informationen das zeitliche Profil und die Ankunftszeit der individuellen Röntgenpulse mit einer Präzision von rund fünf Femtosekunden.
Künftig sollen Röntgenpulse maßgeschneidert werden
„Die gleichzeitige Messung der Ankunftszeit und des Pulsprofils, unabhängig von allen anderen FEL-Parametern, ist der Schlüssel zu dieser Technik“, erklärt Adrian Cavalieri, der Professor an der Universität Hamburg und Leiter der Max-Planck-Forschungsgruppe Strukturdynamik am CFEL ist. Bisher hat keine andere Technik diese vollständige Information über das Timing geliefert – genau diese Information ist jedoch entscheidend für die zukünftigen Anwendungsgebiete dieser einzigartigen Röntgenlichtquellen.
Die von der Forschergruppe veröffentlichten Messungen zur Puls-Charakterisierung stören die FEL-Blitze nicht – es gehen nur vernachlässigbar wenige Photonen bei der Erzeugung der Photoelektronen verloren. Daher kann die Technik im Prinzip in jedem Experiment bei nahezu jeder Wellenlänge angewendet werden. Bei FLASH wird die Methode künftig zur Überwachung und Korrektur der FEL-Pulsdauer für eine Vielzahl von Untersuchungen im Atom- und Molekülkosmos zum Einsatz kommen. In weiteren Experimenten planen die Forscher, diese hochpräzisen Messungen als Rückkopplung einzusetzen, um Röntgenpulsprofile maßschneidern zu können.
->Quelle: www.mpg.de