Schaltungen in Billiardstel Sekunden

Hunderttausend mal mehr Energie als bei einem Blitz

Licht besteht aus einem schwingenden elektrischen und magnetischen Feld. Ein extrem kurzer und intensiver Puls erzeugt auf der Größenskala beispielsweise des Siliziumatoms eine Spannung von ein bis zwei Volt. Das erscheint wenig, doch hochgerechnet auf unsere Makrowelt entspricht dies einer Feldstärke von mehr als zehn Milliarden Volt pro Meter – hunderttausend Mal mehr als in einem Blitz.In ihrem Experiment wiesen die Garchinger Physiker nach, dass die Elektronen stets von dem elektrischen Feld nur einer halben Schwingung des Laserlichts freigesetzt wurden. Das bedeutet, dass der Isolator innerhalb von nicht einmal einer Femtosekunde zum Leiter wird. „Diese Messungen lassen aber die Frage offen, ob die Leitfähigkeit genauso schnell wieder abgeschaltet werden kann“, sagt Doktorand Tim Paasch-Colberg. Erst diese Eigenschaft macht ein Bauelement zu einem Schalter, mit dem sich elektrische Signale steuern und verarbeiten lassen.

Mit Attosekunden-Pulsen lässt sich der Prozess in Zeitlupe filmen

Die Frage, wie schnell sich die Leitfähigkeit abstellen lässt, beantwortete ein Forscherteam um Martin Schultze in einem zweiten Experiment. Wieder wandelten die Physiker das Quarzglas mit einem ultrakurzen Laserpuls vom Isolator zum Leiter um. Dann schossen sie mit unterschiedlicher Verzögerung extrem kurzwellige UV-Laserpulse von nur wenigen Attosekunden Dauer (eine Attosekunde entspricht 10-18 Sekunden oder einem Milliardstel von einem Milliardstel einer Sekunde) hinterher und registrierten auf der Rückseite des Quarzglases, wie stark diese jeweils von dem Material absorbiert werden. Die Absorptionsstärke hängt nämlich davon ab, in welchem der beiden Zustände – Isolator oder Leiter – sich das Material befindet. „Das ist so, als würden wir einen Vorgang mit einer Hochgeschwindigkeitskamera aufnehmen und anschließend in Superzeitlupe studieren“, verdeutlicht Elisabeth Bothschafter, Doktorandin an diesem zweiten Experiment, die Technik.

Auf diese Weise wiesen die Forscher nach, dass die Veränderung des Isolators durch das starke Lichtfeld auch wieder rückgängig gemacht werden kann, und das auf der Zeitskala von wenigen Femtosekunden. Der Wechsel vom Isolator zum Leiter und wieder zurück lässt sich also beliebig wiederholen und ist somit reversibel. „Es ist für uns eine große Überraschung, dass grundlegende Eigenschaften von Stoffen mit der Geschwindigkeit von Lichtfrequenzen verändert werden können“, sagt Martin Schultze.

Ob Quarzglas als lichtschneller Schalter eingesetzt werden kann, müssen weitere Entwicklungen zeigen. So sind die hierfür nötigen intensiven Ultrakurzzeit-Laser derzeit noch viel zu groß. „Wir hoffen, dass diese Resultate viele andere Labore und Gruppen weltweit dazu motivieren, mit uns zusammen weiterführende Untersuchungen durchzuführen“, sagt Ferenc Krausz. „Wir wollen die Realisierbarkeit der vielversprechenden Perspektive, elektronische Schaltungen auf Lichtfrequenzen zu beschleunigen, so zügig wie möglich zu erkunden.“
->Quelle: http://www.mpg.de/6660895/