Molekülstöße in Zeitlupe

316 Elektrodenpaare bremsen Moleküle

Die Anlage in Berlin beruht auf dem Stark-Effekt, durch den sich die Energieniveaus der Moleküle in einem elektrischen Feld aufspalten und der auch aus der Atomphysik bekannt ist. Sie ist fast drei Meter lang und besteht aus 316 hoch polierten Elektrodenpaaren, die abwechselnd horizontal und vertikal angeordnet sind. „Während die Moleküle durch den Abbremser strömen, schalten wir an den jeweiligen Elektrodenpaaren eine elektrische Spannung von 40 000 Volt abwechselnd ein und aus“, erklärt Kirste. „Für die Moleküle ist das so, als ob sie eine Treppe nach oben steigen müssten: Sie verlieren an jedem Elektrodenpaar etwas Energie und werden immer langsamer.“

Für ihr aktuelles Experiment haben die Wissenschaftler mit dem Stark-Abbremser einen Strahl aus Hydroxyl-Molekülen (OH) erzeugt, der senkrecht auf einen weiteren Strahl aus Stickoxid-Molekülen (NO) traf – beide Moleküle sind Radikale, die als besonders reaktionsfreudig gelten. Auf diese Weise konnten die Wissenschaftler untersuchen, was während einer Kollision zweier Radikale bei fest vorgegebener Geschwindigkeit geschieht und welche Energieniveaus im OH-Molekül angeregt wurden: „Bei den Kollisionen ändert sich der Energiezustand der OH-Moleküle; es handelt sich um inelastische Stöße“, erklärt Kirste. „Dadurch wurden die Moleküle zu Rotationen angeregt, während das System kinetische Energie verliert.“ Wie viel Energie genau übertragen wurde, analysierten die Wissenschaftler mit Hilfe zweier Laser, die den Zustand der Moleküle nach dem Stoß bestimmten.

Theorie und Experiment stimmen überein: Genauere Voraussagen zu Reaktionen möglich

Derart detaillierten Informationen über den Stoßprozess gab es bislang noch nicht, und sie werden dazu beitragen, das Verständnis chemischer Reaktionen zu verbessern. Zugleich helfen sie den Forschern auch, bessere theoretische Voraussagen zu treffen: Dafür berechnen sie mit Hilfe der Quantenmechanik die potentielle Energie der Reaktionspartner, zum Beispiel als Funktion ihres Abstandes. Als Ergebnis erhalten sie Potenzialhyperflächen (Potential Energy Surfaces, PES), die Aussagen über den Reaktionsverlauf erlauben. „Mit unserem Experiment konnten wir die fundamentalen Ideen hinter den Potenzialhyperflächen überprüfen“, erklärt Kirste. „Ähnlich detaillierte sind diese bisher nur für einfachere Situationen berechnet worden.“ Die Theoretiker aus Holland konnten nun erstmals die Potenzialhyperflächen für zwei Radikale bestimmen. Dabei zeigte sich, dass Theorie und Experiment gut übereinstimmen.

Nun wollen die Berliner Wissenschaftler die Auflösung ihres Experiments weiter steigern, um Quanteneffekte beim Stoß zwischen Hydroxyl-Radikalen und Helium-Atomen zu untersuchen. Die Gruppe in Holland arbeitet daran, auch die Winkelverteilung der gestreuten Radikale zu messen, um noch mehr Informationen über den Stoßprozess zu gewinnen.
->Quelle: www.mpg.de; Foto: © Ludwig Scharfenberg