Motoren mit mehr als 100 Prozent Effizienz?
Haben Kugeln eine positive Temperatur und liegen in einem Tal bei minimaler potenzieller Energie, so ist dieser Zustand offensichtlich stabil – das ist die Natur, wie wir sie kennen. Befinden sie sich allerdings auf einem Hügel bei maximaler potenzieller Energie, würden sie normalerweise hinunterrollen und dabei ihre potenzielle Energie in Bewegungsenergie umwandeln. „Haben die Kugeln aber eine negative Temperatur, dann ist auch ihre Bewegungsenergie schon so groß, dass sie nicht weiter zunehmen kann“, erklärt Simon Braun, Doktorand in der Arbeitsgruppe. „Daher können die Kugeln nicht hinunterrollen und bleiben auf dem Hügel liegen. Die Energieschranke macht das System also stabil!“ Der Zustand negativer Temperatur ist in ihrem Experiment tatsächlich genauso stabil wie bei positiver Temperatur. „Wir haben auf diese Weise erstmals eine negative absolute Temperatur in einem System beweglicher Teilchen erreicht“, fügt Braun hinzu.
Materie bei negativer absoluter Temperatur hat eine ganze Reihe von verblüffenden Konsequenzen: Mit ihrer Hilfe könnte man Wärmekraftmaschinen wie zum Beispiel Motoren bauen, deren Effizienz über 100 Prozent beträgt. Das heißt jedoch nicht, dass der Energieerhaltungssatz verletzt wird. Vielmehr könnte die Maschine im Unterschied zum üblichen Fall nicht nur Energie aus einem heißen Medium ziehen und damit Arbeit verrichten, sondern auch aus dem kalten.
Bei rein positiven Temperaturen heizt sich im Gegensatz dazu das kältere Medium zwangsläufig auf, nimmt also einen Teil der Energie des heißen Mediums auf und limitiert dadurch die Effizienz. Ist das heiße Medium dagegen bei einer negativen Temperatur, so kann gleichzeitig aus beiden Medien Energie entnommen werden. Die Arbeit, die die Maschine verrichtet, ist somit größer als die Energie, die nur dem heißen Medium entnommen wird – die Effizienz liegt bei über 100 Prozent.
Parallelen zu dunklen Energie im Kosmos
Die Arbeit der Münchner Physiker könnte zudem für die Kosmologie interessant sein. Denn die negative Temperatur weist in ihrem thermodynamischen Verhalten Parallelen zur sogenannten dunklen Energie auf. Diese postulieren Kosmologen als jene rätselhafte Kraft, die den Kosmos dazu bringt, sich immer schneller auszudehnen, obwohl er sich aufgrund der anziehenden Gravitation der Materie im Universum eigentlich kontrahieren sollte. In der Atomwolke des Münchner Labors gibt es ein ähnliches Phänomen: Das Experiment beruht unter anderem darauf, dass sich die Atome des Gases nicht abstoßen, wie in einem gewöhnlichen Gas, sondern anziehen. Das heißt, sie üben einen negativen und keinen positiven Druck aus; die Atomwolke will sich also zusammenziehen und sollte eigentlich kollabieren – genauso wie man das vom Universum unter dem Einfluss der Schwerkraft erwarten würde. Doch wegen ihrer negativen Temperatur tut sie dies gerade nicht. Sie bleibt ebenso vor dem Kollaps bewahrt wie das Universum. – CM/PH
->Quelle: www.mpg.de