Wasserstoffproduktion im Dunkeln im Reagenzglas nachgeahmt
Happes Team stellte den Kern der Dunkelwasserstoffproduktion im Reagenzglas nach und belegte damit den zugrundliegenden Mechanismus. Um an die beteiligten Proteine zu gelangen, ließen die Forscher diese von Bakterien produzieren. Sie brachten zunächst die entsprechenden Gene der Grünalgen in das Darmbakterium Escherichia coli ein, zum Beispiel das Gen für die Pyruvat-Ferredoxin-Oxidoreduktase. Nach dieser Bauanleitung stellte E. coli dann die Proteine her. Happes Team isolierte sie aus den Bakterienzellen und untersuchte sie wie ein Baukastensystem. Im Reagenzglas testeten die Biologen, wie verschiedene Kombinationen von Proteinen unter bestimmten Umweltbedingungen miteinander interagierten.
„Uraltes Enzym“ entdeckt
Dabei fanden sie heraus, dass die Algen bei Stress im Dunkeln auf einen Stoffwechselweg umschalten, der sich sonst nur in Bakterien oder einzelligen Parasiten findet. „Chlamydmonas besitzt ein evolutionär uraltes Enzym“, erklärt Jens Noth aus der AG Photobiotechnologie. „Mit Hilfe von Vitamin B1 und Eisenatomen gewinnt es Energie aus dem Abbau von Zuckern.“ Diese Energie nutzen dann andere Grünalgen-Enzyme, die Hydrogenasen, um Wasserstoff zu bilden. Die Einzeller schalten den Stoffwechselweg ein, wenn sie im Dunkeln plötzlich in sauerstofffreie Bedingungen geraten. Denn wie Menschen brauchen die Grünalgen Sauerstoff zum Atmen, wenn sie ihre Energie nicht aus dem Sonnenlicht schöpfen können. Die Wasserstoffbildung im Dunkeln hilft den Zellen, diese Stressbedingung zu überleben. „Mit dieser Erkenntnis haben wir nun ein weiteres Puzzlestück gefunden, um ein genaues Bild der H2-Produktion in Chlamydomonas zu erhalten“, sagt Thomas Happe. „Das könnte in Zukunft helfen, auch die biotechnologisch relevante lichtabhängige H2-Bildungsrate zu erhöhen.“
Titelaufnahme: J. Noth, D. Krawietz, A. Hemschemeier, T. Happe (2013): Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii, Journal of Biological Chemistry, doi: 10.1074/jbc.M112.429985
Weitere Informationen: Prof. Dr. Thomas Happe, AG Photobiotechnologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: thomas.happe@rub.de
->Quelle: aktuell.ruhr-uni-bochum.de