Neues MPI-Modell ermöglicht Vorhersagen, wie Nanopartikel entstehen und gibt Hinweise, wie sich der Prozess steuern lässt
Nanopartikel sind vielseitige Hoffnungsträger: Sie sollen als Vehikel für medizinische Wirkstoffe oder Kontrastmittel ebenso dienen wie als elektronische Speicherpunkte oder Verstärkung in Stützmaterialien. Um sie für die verschiedenen Anwendungen gezielt in Form zu bringen, leisten Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm und der Universität im niederländischen Eindhoven nun einen grundlegenden Beitrag. Sie haben in einer Studie an Magnetit-Nanopartikeln ein Modell entwickelt, wie sich abhängig von den physikalischen Eigenschaften kristalline Teilchen eines Materials bilden. Nanopartikel aus Magnetit nutzen manche Bakterien, um sich im Magnetfeld der Erde zu orientieren, sie finden aber auch als Speichermaterial oder Kontrastmittel für Kernspin-Untersuchungen Verwendung. Zu verstehen, wie sie wachsen, könnte helfen, Nanopartikel mit gewünschten Eigenschaften gezielt zu züchten.
In mancher Hinsicht ähnelt Materialdesign der Kindererziehung: Viele Eigenschaften sind von Natur aus gegeben, andere werden durch die Bildung erworben – und das entscheidende passiert dabei ganz am Anfang. In die Kinderstube von Magnetit-Nanopartikeln hat nun ein Team um Damien Faivre, Leiter einer Forschungsgruppe am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, geblickt.
Magnetit-Partikel, die sich zu feinen Nadeln anordnen, dienen manchen Meeresbakterien als Kompass, wenn sie sich auf der Suche nach dem Meeresgrund am Magnetfeld der Erde orientieren. Synthetische Magnetit-Teilchen werden aber auch als Speichereinheiten magnetischer Datenträger, in Tinten, magnetischen Flüssigkeiten oder medizinischen Kontrastmitteln eingesetzt. Anhand ihrer Beobachtungen an den Magnetit-Nanoteilchen haben die Potsdamer Forscher nun die etablierte Theorie erweitert, wie aus einer Lösung Kristalle eines Materials entstehen.
Das klassische Modell erklärt die Entstehung vieler Nanopartikel nicht
In der übersättigten Lösung eines Materials ballen sich zunächst spontan, das heißt mehr oder weniger zufällig, einige Atome und Moleküle zu einem Keim zusammen, der dann weiter wächst. Der klassischen Vorstellung des Kristallwachstums zufolge fängt der Keim gelöste Atome oder Moleküle ein. Dabei kann entweder unmittelbar ein perfekt geordneter Kristall oder erst ein amorphes, also unordentliches Konglomerat entstehen, das sich dann zu einem Kristall umstrukturiert.