Rolle von Übergangsmetall-Ionen bei der Bildung von Sulfat-Aerosolen bisher unterschätzt
Harris‘ Studie offenbart, dass der wichtigste Weg der Sulfatbildung in den meisten Klimamodellen bisher offenbar übersehen wurde. Ihren Messungen zufolge entstehen Sulfate in Wolken am häufigsten über die Oxidation von Schwefeldioxid (SO2) mit Sauerstoff (O2). Diese Reaktion wird durch sogenannte Übergangsmetallionen, kurz TMI für „transition metal ion“, wie Eisen, Mangan, Titan oder Chrom, katalysiert. Zudem traten die Sulfate meistens in Wolkentropfen auf, die sich auf großen Mineralstaubpartikeln, den wichtigsten Lieferanten der Übergangsmetallionen, gebildet hatten. Sehr viel seltener führte die Spur zur Oxidation von Schwefeldioxid mit Wasserstoffperoxid (H2O2) und Ozon (O3).
„Als meine Kollegen und ich mit diesem Ergebnis auf die grundlegenden Annahmen der Klimamodelle blickten, waren wir sehr erstaunt. Denn nur eines von zwölf Modellen berücksichtigt die Rolle der Übergangsmetallionen bei der Sulfatbildung“, so die Wissenschaftlerin, die mittlerweile am Massachusetts Institute of Technology (MIT) in den USA arbeitet. Stattdessen verwendeten die meisten Modelle den alternativen Fall der Schwefeldioxidoxidation durch Wasserstoffperoxid (H2O2), Ozon (O3) und das Hydroxyl-Radikal (OH).
Da Sulfat, das katalytisch durch Übergangsmetallionen gebildet wird, an der Oberfläche relativ großer Mineralstaubpartikel entsteht, sind diese größer als diejenigen, die aus der Reaktion mit Wasserstoffperoxid entstehen. Aufgrund ihrer Größe fallen sie – bedingt durch die Schwerkraft – schneller wieder nach unten. Somit könnte der Zeitraum, in dem sie sich kühlend auf das Klima auswirken können, kürzer sein als bisher vielfach angenommen wurde.
Deutlicher Effekt in China und Indien zu erwarten
Eliza Harris geht deshalb davon aus, dass die bisherigen Prognosen die kühlenden Eigenschaften der Sulfat-Aerosole auf das Klima überschätzen. Bisher lässt sich jedoch noch nicht quantifizieren, welche Auswirkungen Harris‘ Entdeckung auf die Klimaprognosen haben wird. Zukünftige Modelle sollten die TMI-Katalyse allerdings als wichtigen Reaktionsweg der SO2-Oxidation berücksichtigen, so die Forscherin. Zwar schätzt sie die Auswirkungen auf die Klimaprognosen für europäische Regionen als eher gering ein, da hier nur wenig Mineralstaub in der Luft vorliege und der Schwefeldioxidausstoß kontinuierlich auf dem Rückzug sei. „In Indien und China jedoch, wo mit steigenden SO2-Emissionen in der Zukunft zu rechnen ist und zudem erheblich mehr Staub in der Luft ist, könnte sich ein deutlicherer Effekt abzeichnen“, vermutet sie. Weitere Studien werden es zeigen.
An den Ergebnissen der nun in der Zeitschrift Science veröffentlichten Studie waren neben dem Max-Planck-Institut für Chemie in Mainz das Leibniz-Institut für Troposphärenforschung in Leipzig, das Department of Atmospheric Science an der Colorado State University, das Earth System Science Research Centre des Instituts für Geowissenschaften der Universität Mainz und das Institut für Physik der Atmosphäre der Universität Mainz beteiligt. Die Wolkenproben wurden im Rahmen der internationalen Messkampagne „The Hill Cap Cloud Thuringia“ (HCCT-2010) im Thüringer Wald genommen.
Erst kürzlich wurde Eliza Harris als jüngste Doktorandin der Max-Planck-Gesellschaft des Jahres 2012 mit dem Dieter-Rampacher-Preis ausgezeichnet.
->Quelle: mpic.de