Organotextile Katalyse – Katalysatoren auf Nylon

Hervorragende Ausbeute, geringer Verschleiß

Für ihre Untersuchungen verwendeten die Mülheimer Forscher drei organische Katalysatoren: einen basischen (Dimethylaminopyridin, DMAP), eine Sulfonsäure und einen Katalysator, der sowohl eine basische als auch eine Säure-Funktionalität hat. Letzterer dient in der pharmazeutischen Industrie dazu, eine Reaktion zu einem von zwei Produkten zu lenken, die chemisch völlig identisch sind. Die beiden Formen sind allerdings wie die linke und die rechte Hand spiegelbildlich gebaut, wobei nur eine Variante die gewünschte medizinische Wirkung zeigt. Der Katalysator, der diese Variante erzeugt, ließ sich bisher nur in gelöster Form einsetzen und musste anschließend wieder abgetrennt werden. Mit einem auf Stoff fixierten Katalysator könnte die aufwändige Trennung entfallen.

Um die Hilfsmittel an die Nylonfasern zu heften, bestrahlten die Chemiker den mit einem Katalysator versetzten Stoff fünf Minuten lang mit UV-Licht. Länger nicht, weil das die Aktivität des Katalysators und auch seine Fixierung am Nylon beeinträchtigt hätte. Ein vergleichbares Verfahren gab es vorher noch nicht.

Die quasi mit dem Stoff verwobenen Katalysatoren zeigten alle Eigenschaften, die Chemiker von einem solchen System erwarten: So kann sich die Ausbeute der chemischen Reaktionen, die die Wissenschaftler mit den beladenen Nylonstreifen vornahmen, sehen lassen: Alle drei Katalysatoren setzten die Ausgangsstoffe zu rund 90 Prozent zu den gewünschten Produkten um. Und der in der pharmazeutischen Industrie gebräuchliche Kuppler, der nur eins von zwei Spiegelbild-Molekülen erzeugt, erreichte eine Trefferquote von mehr als 95 Prozent – ohne dabei große Anzeichen von Verschleiß zu zeigen. Mehrere hundert Versuchsdurchläufe vollzog Ji Wong Lee und stellte dabei fest, dass die Katalysatoren kaum etwas von ihrer Funktionalität einbüßten.

Große Oberfläche macht chemische Reaktionen effizienter

Gegenüber anderen Möglichkeiten, Katalysatoren zu fixieren, kann die „organotextile Katalyse“ mit einigen Vorteilen aufwarten: Vor allem bietet es den Reaktionspartnern eine größere Oberfläche als andere Trägermaterialien wie etwa Kunststoffkugeln oder -folien. Und je größer die Oberfläche, desto effizienter verläuft eine Reaktion. Zudem ist Nylon flexibel und sehr preiswert. Trockene, mit Katalysatoren beladene Stoffe lassen sich leicht transportieren, sodass sich die Voraussetzungen für manche chemische Prozesse leichter dort schaffen lassen, wo sich kaum anspruchsvolle chemische Anlagen errichten lassen. So könnte die organotextile Katalyse etwa helfen, Wasser dort aufzuarbeiten, wo Menschen von der Wasserversorgung abgeschnitten sind.

„Mit unserer Methode kann man günstig dauerhaft funktionalisierte Textilien herstellen, ohne dass die Umwelt belastet wird“, sagt Ji Wong Lee. Er ist fest davon überzeugt, dass sich das Verfahren in mehreren wissenschaftlichen Bereichen anwenden lässt – ebenso wie in industriellen Prozessen. „Das könnte neben der Chemie auch in der Biologie, in den Materialwissenschaften oder in der Pharmazie der Fall sein.“ – SLG/PH
->Quelle: mpg.de