AWI-Studie: Unterhalb von 2000 m Tiefe schnellere Erwärmung als Weltmeere
Die Tiefen der Grönlandsee erwärmen sich derzeit etwa zehnmal stärker als die Weltmeere im Mittel. Dieses Forschungsergebnis haben Wissenschaftlerinnen und Wissenschaftler des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung, jetzt in der Fachzeitschrift Geophysical Research Letters veröffentlicht. Sie analysierten für ihre Studie Temperaturmessungen der Jahre 1950 bis 2010 aus den Tiefen der Grönlandsee – einem Meeresgebiet, das unmittelbar südlich des Arktischen Ozeans liegt.
Seit 1993 fahren Ozeanographen des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), regelmäßig mit dem Forschungseisbrecher Polarstern in die Grönlandsee, um die Veränderungen in dieser Region zu erforschen. Zum Expeditionsprogramm der Wissenschaftler gehören dabei stets umfangreiche Temperatur- und Salzgehaltmessungen. Für ihre jetzt veröffentlichte Studie haben die AWI-Forscher diesen Langzeit-Datensatz mit historischen Daten kombiniert, die bis ins Jahr 1950 zurückreichen. Das Ergebnis ihrer Analyse: In den letzten dreißig Jahren ist die Wassertemperatur unterhalb von 2000 Metern Tiefe um 0,3 Grad Celsius gestiegen.
„Das hört sich nach wenig an, aber wir müssen die Zahl in Relation zu der großen Masse der erwärmten Wasserschicht sehen“, sagt AWI-Forscherin und Studien-Erstautorin Dr. Raquel Somavilla Cabrillo. Zum Vergleich: Die in der tiefen Grönlandsee zusätzlich gespeicherte Energie würde einer Erwärmung der Atmosphäre von Europa um 4 Grad Celsius entsprechen. „Die Grönlandsee macht zwar nur einen kleinen Teil des Ozeans aus. Aber mit einer Erhöhung um 0,3 Grad haben wir in der tiefen Grönlandsee eine zehnmal schnellere Erwärmung als im Mittel des Weltozeans. Allerdings müssen wir berücksichtigen, dass besonders in der Tiefsee große Gebiete bisher wenig untersucht sind“, fügt Raquel Somavilla hinzu.
Als Ursache der Erwärmung in der Grönlandsee nennt die Wissenschaftlerin das veränderte Zusammenspiel zwischen dem absinkenden, sehr kalten Oberflächenwasser und dem einströmenden relativ warmen Tiefenwasser aus der Arktis. Bis zum Jahr 1980 standen beide Prozesse offenbar im Gleichgewicht. Seit Anfang der 1980er Jahre aber wird der warme Einstrom aus der Arktis nicht mehr durch tiefreichende Abkühlung in der Grönlandsee kompensiert: „Früher hat der Ozean östlich von Grönland im Winter so viel Wärme an die Luft abgegeben, dass die Wassersäule durch das sehr kalte Wasser an der Oberfläche instabil und häufig bis zum Boden durchmischt wurde“, erläutert Somavilla. Diese Abkühlung des tiefen Ozeans, so die Forscherin, fand jedoch in den vergangenen dreißig Jahren nicht mehr statt. Das relativ warme Tiefenwasser aus dem Arktischen Ozean dagegen ströme weiterhin in das grönländische Tiefseebecken. (Zur Frage „Warum ist das Tiefenwasser aus der Arktis warm?“ das Glossar unten)
Folgt: Forscher brauchen langen Atem
Forscher brauchen langen Atem
Diese veränderten Verhältnisse eröffnen den AWI-Wissenschaftlern nun einmalige Forschungsmöglichkeiten: „Wir benutzen diese Veränderungen als natürliches Experiment. Denn über die Erwärmung konnten wir nun ermitteln, wie groß der Strom von Tiefenwasser aus der Arktis in die tiefe Grönlandsee ist“, berichtet Prof. Dr. Ursula Schauer, Leiterin der Sektion Messende Ozeanographie am Alfred-Wegener-Institut über das Projekt und fügt hinzu: „Diese Tiefseeprozesse laufen nur sehr langsam ab und Forscher brauchen einen langen Atem, um sie durch Langzeituntersuchungen zu zeigen.
Das aus der Arktis kommende Tiefenwasser misst im Durchschnitt -0,9 Grad Celsius und ist damit deutlich wärmer als das Oberflächenwasser in der Grönlandsee, das im Winter auf -1,8 Grad abkühlt. Woher aber kommt diese Wärme im Tiefenwasser? Sie ist das Ergebnis einer langen Kettenreaktion in den flachen Rand- oder Schelfmeeren des Arktischen Ozeans – nämlich genau dort, wo in den Wintermonaten neues Meereis entsteht. Beim Gefrieren des Oberflächenwassers wird dessen Salz nicht in das Eis eingeschlossen, sondern sinkt in die Wasserschicht unter dem Eis herab. Dadurch erhöht es dessen Dichte. Das Wasser wird immer schwerer und sinkt ebenfalls in die Tiefe. Dieses Herabsinken der Wassermasse lässt sich mit einem Schneeball vergleichen, der einen schneebedeckten Hang herunterrollt. Je länger er rollt, desto mehr Schnee haftet an ihm und desto größer wird er. Ähnlich ergeht es der Wassermasse, die im Meer den Schelfhang, also den Rand der Kontinentalplatte, hinabrollt. Sie kreuzt auf ihrem Weg in die Tiefe eine warme Strömung aus dem Atlantik und reißt einen Teil dieses warmen Wassers mit in die Tiefe. Das heißt, sie transportiert Wärme aus einer höher gelegenen Wasserschicht bis tief zum Grund des Arktischen Ozeans, wo sich dieses warme, salzige Wasser sammelt und anschließend als warmes Tiefenwasser in die Grönlandsee strömt.
->Quelle: awi.de; onlinelibrary.wiley.com