Ladungsdichtewellen treten in allen Kuprat-Supraleitern auf
Mithilfe der sich ergänzenden Untersuchungen wiesen die Forscher für beide Proben nach, dass die Ladungswellen in verschiedenen bismuthhaltigen Kupraten auftreten, und zwar im gesamten Material und nicht etwa nur an der Oberfläche. „Da wir die Ladungsdichtewellen vorher schon an einem anderen Kuprat-Supraleiter gefunden haben, können wir davon ausgehen, dass sie in allen Kuprat-Supraleitern auftreten und die Supraleitung zestören“, sagt Bernhard Keimer.
Mit einer der beiden Arbeiten vervollständigten die Wissenschaftler das Puzzle der Hochtemperatur-Supraleitung aber noch an anderer Stelle. Sie können nämlich Auffälligkeiten in der Bandstruktur dieser Materialien erklären. Die Bandstruktur ist eine Art Masterplan des elektronischen Verhaltens von Materialien. Aus ihr kann man etwa ablesen, ob es sich um einen metallischen Leiter, einen Isolator oder einen Halbleiter handelt. Sie gibt nämlich wieder, ob Elektronen fest gebunden sind, ob sie sich frei durch das Material bewegen können oder ob sie mit einem Energieschub eine Bandlücke überwinden müssen, um freie Beweglichkeit zu erlangen.
Das Ziel: genaue Kontrolle der starken elektronischen Kräfte
Bei Supraleitern treten in der Bandstruktur Pseudolücken auf. Sie heißen so, weil die Lücken anders als in einem Isolator nicht vollständig sind und für Elektronen bestimmter Geschwindigkeiten überhaupt nicht existieren. Für viele Elektronen bedeutet die Pseudolücke jedoch, dass die Ladungsträger sich nicht mehr ungehindert durch das Material bewegen können. „Wir haben jetzt festgestellt, dass die Ursache der Pseudolücke in den Ladungsdichtewellen liegt“, sagt Bernhard Keimer. Das lässt sich auch gut nachvollziehen: Wenn die Elektronen eine feste Ordnung einnehmen, verlieren sie ihre Beweglichkeit. „Letztlich lassen sich Pseudolücken also auch auf die starken Wechselwirkungen der Elektronen zurückführen“, so Keimer.
In Zukunft wird es also darum gehen, die starken Wechselwirkungen der Elektronen exakt kontrollieren zu können. Nur dann können Physiker und Materialwissenschaftler die Kräfte so kanalisieren, dass diese auch bei normaler Umgebungstemperatur zum Kitt der Cooperpaare werden und nicht etwa Ladungsdichtewellen erzeugen. „Wenn wir das schaffen, können wir einen wichtigen Beitrag für die Energieversorgung der Zukunft leisten“, sagt Bernhard Keimer. (PH)
->Quelle: mpg.de; helmholtz-berlin.de