Eine besonders helle Quelle für einzelne Photonen – abhörsichere Kommunikation dank Quantenkryptografie
Die Forscher haben nun ein Molekül dazu gebracht, einzelne Photonen auszusenden, die Atome aufnehmen können. Quellen einzelner Photonen gibt es inzwischen einige, sie zeichnen sich dadurch aus, dass sie nie zwei oder mehr Photonen gleichzeitig abgeben. Einzelne Photonen sind als Träger von Quanteninformation interessant, weil sie sich etwa durch Glasfasern übertragen lassen und ihr Quantenzustand nicht kopiert werden kann. Sie könnten dank eines Verfahrens namens Quantenkryptografie eine abhörsichere Kommunikation ermöglichen. „Unsere Einzelphotonen-Quelle ist um ein vielfaches heller als andere“, sagt Ilja Gerhardt. Denn die Moleküle der Stuttgarter Forscher geben pro Sekunde mehr als eine halbe Million Photonen, und damit 1000 Mal mehr Lichtteilchen ab als andere Quellen, aber eben in einem kontinuierlichen Strom einzelner Lichtteilchen. Besonders helle Quellen einzelner Photonen könnten die Übertragung von Quanteninformation deutlich beschleunigen, weil sie mehr Information pro Sekunde übermitteln können.
Die Moleküle leuchteten aber nicht nur besonders hell, sondern auch in einem besonderen Licht. „Wir haben ein Molekül dazu gebracht, mit der Wellenlänge eines Atoms zu sprechen“, sagt Ilja Gerhardt. Das hieß zunächst, passende Moleküle und Atome auszuwählen. So durchforstete Ilja Gerhardt die Fachliteratur danach, welche Atome und Moleküle Licht ungefähr gleicher Wellenlänge absorbieren und emittieren – sich also gut kombinieren lassen. Das hängt vor allem davon ab, welche energetischen Zustände die Elektronen der Kandidaten annehmen können. Wenn ein Elektron nämlich von einem Energieniveau zu einem höher gelegenen springt, schluckt es dabei ein Photon, weil es dessen Energieschub braucht. Fällt es von einem Level auf eines darunter, spuckt es dagegen ein Lichtteilchen aus. Dies ist auch bei einzelnen organischen Molekuelen der Fall. Üblicherweise senden die Teilchen jedoch rot-verschobene, also energieärmere Photonen aus – ähnlich wie ein Textmarker, der orange fluoresziert, wenn man ihn mit blauem Licht bestrahlt.
Moleküle, die in der optischen Sprache der Atome sprechen
Als geeignetes Paar identifizierte Ilja Gerhardt etwa die aromatische Verbindung Dibenzanthanthren und Natrium. Denn die Dibenzanthanthren-Moleküle sprechen in der optischen Sprache der Atome: Sie geben orange-gelbes Licht ab, das Natriumatome absorbieren.
Allerdings geben nicht alle Moleküle Licht exakt derselben Farbe ab, jedes spricht gewissermaßen in seinem eigenen Dialekt. Um eines zu identifizieren, das vom Natrium möglichst gut verstanden wird, präparierten die Forscher zunächst eine Lösung der Moleküle. Diese verdünnten sie so stark, dass die Moleküle viel Platz zueinander hatten. Nun froren sie einen dünnen Film der Lösung bei 1,4 Grad über dem absoluten Nullpunkt von minus 273,15 Grad Celsius ein. In dieser Kälte bewegen sich die Moleküle kaum noch, sodass sie Licht von sehr scharf eingegrenzter Wellenlänge aufnehmen und abgeben.
Auf die Probe strahlten die Forscher durch ein Mikroskop nun einen Laserstrahl mit der en Farbe, die auch Natriumatome aufnehmen. Im Mikroskop sahen sie dann die Moleküle, die auf das orange-gelbe Licht ansprechen. Dabei wurden nur die Moleküle angeregt, die auch mit diesem Licht kommunizieren konnten. Wegen des Energieverlusts zwischen Absorption und Emission präsentierten sich die Moleküle in rotem Licht.
Im Strahl des anregenden Lasers gehen die roten Blitze der Moleküle jedoch unter, so wie aus einem Stadion bei Flutlicht auch die Sterne des Nachthimmels nicht mehr zu erkennen sind. Daher filtern Forscher das anregende Licht aus dem Strahl, der auf ihren Detektor fällt. Um ein einzelnes Molekül zu sehen, würde ein einfaches rotes Glas eigentlich genügen. Doch leider filtert das Glas auch einen Teil des roten Lichts und wirkt daher wie eine Sonnenbrille – viele Photonen gehen so verloren.
Folgt: Natriumdampf als Filter könnte biologische Untersuchungen erleichtern