Kohlenstoff-Nanoschicht durch Bestrahlung mit UV-Licht
In einer besonderen Versuchsanordnung sorgten die Wissenschaftler dafür, dass sich viele dieser Moleküle in einer einzigen selbst-organisierten Schicht perfekt parallel zueinander anordneten – ganz so wie die Borsten eines Besens. Einen kleinen Unterschied zu Besenborsten gab es allerdings doch: Die parallel zueinander verlaufenden Molekülketten wiesen einige leichte Knickstellen auf. Durch diese Anordnung befanden sich die kohlenstoffreichen Abschnitte aller Moleküle auf gleicher Höhe. Bestrahlten die Forscher diese Anordnung mit UV-Licht, brachen die Dreifachbindungen teilweise auf, und es bildeten sich stattdessen Bindungen zwischen den Kohlenstoffatomen benachbarter Moleküle aus. Da auf diese Art am Ende praktisch alle Besenborsten mit ihren jeweiligen Nachbarborsten verbunden waren, entstand eine durchgehende Schicht aus Kohlenstoffatomen – eine Kohlenstoff-Nanoschicht.
Eine Kohlenstoff-Nanoschicht, die sich selbst organisiert: Kettenmoleküle mit einem wasserlöslichen und einem wasserunlöslichen Ende ordnen sich auf einer Wasseroberfläche von selbst wie die Borsten einer Bürste an. Ultraviolettes Licht startet nun die chemische Reaktion, in der sich die reaktiven Kohlenstoff-Dreifachbindungen im Mittelteil der Ausgangsverbindung zu einer durchgehenden Schicht vernetzen – sie verkohlen. Sowohl die wasserlösliche als auch die wasserunlösliche Seite der Nanoschicht lassen sich dabei chemisch mit Funktionen für diverse Anwendungen ausstatten.
Tensidartige Moleküle wie in Geschirrspülmitteln
Um dies alles zu ermöglichen, mussten die Wissenschaftler aus Lausanne beim vorherigen Moleküldesign freilich tief in die Trickkiste greifen. Um überhaupt eine parallele Anordnung ihrer Moleküle sicherzustellen, ersannen sie tensidartige Moleküle, wie sie auch im Geschirrspülmittel eine Rolle spielen. Dabei ist ein Ende gut in Wasser löslich, das andere dagegen gar nicht. Zwischen diesen beiden Enden platzierten sie die reaktiven Dreifachbindungen.
Brachten sie nun ihre Verbindung in Kontakt mit Wasser, löste sich lediglich das eine Molekülende. Der gesamte übrige Rest war dagegen so unlöslich, dass er von der Oberfläche in die Luft ragte. Den Forschern gelang es dabei, gezielt einen einheitlichen Abstand zwischen den einzelnen molekularen Besenborsten einzustellen. Dieser musste in der Höhe der Dreifachbindungen kleiner als 0,4 Nanometer sein, denn erst dann sind sich die benachbarten Kohlenstoffatome nahe genug, um unter UV-Licht eine neue Bindung zueinander einzugehen.
Hochspezialisierte Analytik belegt den Synthese-Erfolg
Für die Wissenschaftler war es wichtig, zu verstehen, wie die Molekülschicht entlang der Wasser-Luft-Grenze tatsächlich aussah und wie sie sich im Verlaufe der Reaktion veränderte. Hierbei kamen einige spezielle Verfahren zum Tragen, die die Gruppe um Gerald Brezesinski am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam in ihrem Repertoire hat. Um etwa die Lage der jeweiligen Atome in der Grenzschicht – und damit auch die genaue Anordnung der Ausgangsmoleküle – nachzuweisen, nutzten die Forscher hochenergetische Röntgenstrahlen des Synchrotrons DESY in Hamburg. Wie diese Strahlen an der hauchdünnen Probenschicht gestreut oder reflektiert wurden, gab Gerald Brezesinski und seiner Mitarbeiterin Cristina Stefaniu, die inzwischen an der Universität Potsdam forscht, schließlich Aufschluss über die genaue Anordnung der Ausgangsmoleküle.
Folgt: Infrarot-Reflexions-Absorptions-Spektroskopie und Brewster-Winkel-Mikroskopie