Eine extrem genaue Messung des magnetischen Moments eines Protons könnte bei der Erklärung des Materieüberschusses im Universum helfen
Sekundenbruchteile nach dem Urknall entstanden Materie und Antimaterie in gleichen Mengen – um einander gleich wieder auszulöschen. Doch ein kleiner Materieüberschuss überlebte und formte das uns heute bekannte Universum. Die Ursache dieses kleinen Überschusses gehört zu den größten Rätseln der Physik. Ein präziser Vergleich der Eigenschaften von Materie und Antimaterie könnte zu seiner Lösung beitragen. Zu diesen Eigenschaften zählt das magnetische Moment des Protons, das eine wissenschaftliche Kooperation nun so präzise wie nie zuvor bestimmt hat. Beteiligt waren daran Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg. Als nächstes wollen die Wissenschaftler das magnetische Moment des Antiprotons messen.
Klitzekleiner Sprung im kosmischen Spiegel
Es ist ein klitzekleiner Sprung im kosmischen Spiegel, dem wir unsere Existenz verdanken. In der heißen Geburtsphase des Universums entstanden Materie und ihr Spiegelbild, die Antimaterie, zu beinahe gleichen Anteilen. Da es im heißen Babyuniversum sehr eng zuging, trafen die gegensätzlichen Materiebrüder jedoch aufeinander und zerstrahlten dabei. Das Echo dieser gewaltigen Explosion hallt in der kosmischen Hintergrundstrahlung bis heute nach. Wäre die Materievernichtung damals perfekt symmetrisch verlaufen, dann hätte sich unser Universum in eine Blase aus reiner Strahlung verwandelt, die sich ohne weitere spannende Ereignisse ausdehnt und abkühlt. Dass es aber Galaxien, Sterne, Planeten und uns selbst gibt, verdanken wir einem kleinen Fehler in der kosmischen Buchhaltung. Eine winzige Abweichung von der perfekten Spiegelsymmetrie zwischen Materie und Antimaterie könnte für das Überleben des kleinen Materieüberschusses gesorgt haben.
Proton und Antiproton
Die Frage, was für diesen winzigen Sprung im kosmischen Spiegel gesorgt hat, ist eine der großen bislang ungelösten Fragen der Physik. Seit Jahrzehnten suchen verschiedene physikalische Disziplinen mit unterschiedlichen Strategien nach einer Lösung. Ein vielversprechender Ansatz besteht darin, fundamentale Eigenschaften von Materiebausteinen mit ihren Antimaterie-Spiegelbildern zu vergleichen. Attraktive Kandidaten für so ein Vergleichsprogramm sind das Proton und das Antiproton. Ersteres ist – neben dem Neutron – einer der Bausteine der Atomkerne. Zusammen mit einem Elektron bildet es zudem Wasserstoff, das einfachste und häufigste Element im Universum.
Neue Präzisionsmessung 42 Jahre nach der bis dato genauesten Bestimmung
Das Proton ist nicht nur elektrisch geladen, sondern auch magnetisch. Dieser Magnetismus ist ein vielversprechender Punkt auf der wissenschaftlichen Materie-Antimaterie-Checkliste. Einer internationalen Kooperation gelang es nun, das magnetische Moment des Protons, also gewissermaßen die Stärke seines Magnetismus mit bisher unerreichter Präzision zu messen. „Die bis dahin genaueste Messung war 42 Jahre alt und zudem nur indirekt“, sagt Klaus Blaum, Direktor am Max-Planck-Institut für Kernphysik in Heidelberg. „Ihre Interpretation erforderte viele zusätzliche Annahmen, was eine Limitierung darstellt.“
Das schwingende Proton (rot) erzeugt einen winzigen Strom, den eine hochempfindliche Elektronik erfasst. Das magnetische Moment des Protons ist als roter Pfeil eingezeichnet, die grünen Linien zeichnen das Magnetfeld in der Falle nach. In dem Magnetfeld kann das Proton zwei entgegengesetzte Orientierungen einnehmen, sodass das Proton in der Falle unterschiedlich schnell schwingt. Aus den Schwingungsfrequenzen lässt sich die Stärke des magnetischen Moments bestimmen.
Folgt Um ein Millionstel eines Milliardstels eines Milliardstels schwächer als eine typische Kompassnadel