Fraunhofer CSP steigert Solarmodulleistung um fünf Prozent
Mit einer neu entwickelten Verschaltungstechnik haben Forscher des Fraunhofer-Center für Silizium-Photovoltaik CSP eine Modulbauweise entwickelt, die mit sogenannten Halbzellen eine Leistungssteigerung von 15 Watt pro Modul erreicht.
Solarzellen werden zum Schutz vor Umwelteinflüssen und zur einfachen Installation und Handhabung in Solarmodulen verschaltet und laminiert. Dabei reduzieren optische und elektrische Verluste die Leistung der Module. Durch das Halbieren der Solarzellen werden die Ströme in Zellen und Zellverbindern halbiert und die elektrischen Serienwiderstandsverluste reduziert. Am Fraunhofer CSP wurde so und durch eine geschickte Verschaltung der halben Zellen Solarmodule mit 15 W mehr Leistung hergestellt. Ein Solarmodul mit 144 halben Zellen liefert 330 W, während die Leistung des entsprechenden Referenzmoduls mit 72 ganzen Zellen 315 W beträgt. Dies entspricht einer Leistungssteigerung von knapp 5%.
Die zusätzliche Leistung wird dabei durch eine Reduktion der elektrischen Verluste und eine verbesserte Optik in den Solarmodulen erzielt. Im Freifeld haben Ertragsmessungen über zehn Monate gezeigt, dass die Module 3% zusätzlicher Energie liefern. Die Neuentwicklung ist das Ergebnis eines einjährigen Projektes zwischen dem Solar Energie Research Institute of Singapore (SERIS) und dem Fraunhofer-Center für Silizium-Photovoltaik CSP.
„Als nächste Schritte werden wir den Prozess der Zellteilung noch weiter verbessern um elektrische und mechanische Schädigungen beim Teilungsprozess besser zu verstehen, damit zu minimieren und die Umsetzung in die Fertigung vorantreiben“, sagt Dr. Jens Schneider, der Leiter der Modultechnologie am Fraunhofer CSP.
Die halben Solarzellen werden hergestellt, in dem vollständig prozessierte ganze Zellen von der Rückseite mit einem Nanosekunden-Laser angeritzt und dann mechanisch gebrochen werden. „Eine weitere große Herausforderung und Chance in Halbzellenmodulen stellt das elektrische Verschaltungsdesign dar. Durch die größere Anzahl an Zellen wird es viel komplexer bietet jedoch auch Möglichkeiten die Module robuster gegen Verschattungen zu gestalten“, erklärt Schneider weiter.
Professor Jörg Bagdahn, der Leiter des Fraunhofer CSP, ist sich sicher, dass die Technologie sehr zügig in die industrielle Fertigung umgesetzt werden kann: „Gerade in der Phase eines starken Anstieges der weltweiten PV Installation ist die Industrie an Technologien interessiert, die sich in existierende Anlagen integrieren lässt“. Die weltweite Installation von Photovoltaikmodulen wird von 37 GW im Jahr 2013 auf 43-48 GW im Jahr 2014 steigen. Für 2018 wird von führenden Marktforschungs-instituten ein weltweiter Markt von 100 GW pro Jahr vorhergesagt.
Quelle: csp.fraunhofer.de