Nur sechs Atomlagen dick

Zwei Schichten mit unterschiedlichen Aufgaben

Wolframdiselenid ist ein Halbleiter, der aus drei Atomschichten besteht. In der Mitte befindet sich eine Lage von Wolfram-Atomen, die oberhalb und unterhalb der Schicht durch Selen-Atome verbunden sind. „Dass Wolframdiselenid geeignet ist, elektrischen Strom aus Licht zu erzeugen, konnten wir bereits vor einigen Monaten zeigen“, sagt Thomas Müller. Allerdings müsste man beim Bau einer Solarzelle aus reinem Wolframdiselenid in Mikrometer-engen Abständen winzige Elektroden in das Material einbauen. Durch die Kombination mit einem weiteren Material (Molybdändisulfid, das ebenso aus drei Atomlagen besteht) ist das nun nicht mehr nötig. Somit lässt sich das Schichtsystem als großflächige Solarzelle einsetzen.

Wenn Licht auf ein photoaktives Material fällt, dann werden einzelne Elektronen von ihrem Platz gelöst. Übrig bleibt ein bewegliches Elektron und ein Loch an der Stelle, wo sich das Elektron vorher befunden hat. Sowohl das Elektron als auch das Loch kann im Material herumwandern, zum Stromfluss können beide allerdings nur dann beitragen, wenn sie voneinander getrennt werden, sodass sie sich nicht wieder miteinander vereinen.

Um diese Rekombination von negativ geladenen Elektronen mit positiv geladenen Löchern zu verhindern, kann man entweder Elektroden verwenden, über die man die Ladungsträger absaugt, oder man benutzt dafür eine zweite Materialschicht. „Die Löcher bewegen sich im Wolframdiselenid, die Elektronen hingegen wandern über das Molybdändisulfid ab“, sagt Thomas Müller. Damit ist die Rekombinations-Gefahr gebannt.

Um diesen Effekt zu ermöglichen, müssen die Energien der Elektronen in den beiden Schichten optimal angeglichen werden, was im Experiment durch ein elektrostatisches Feld geschieht. Florian Libisch und Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien konnten mit Computersimulationen berechnen, wie sich die Energie der Elektronen in den beiden Materialien ändert und bei welchen Spannungen eine optimale Ausbeute an elektrischer Leistung zu erwarten ist.

Atom an Atom: enger Kontakt durch Hitze

„Eine der größten technischen Herausforderungen war es, die beiden Materialien atomar flach aufeinander aufzubringen“, so Thomas Müller. „Wenn sich zwischen den beiden Schichten noch andere Moleküle verstecken, so dass kein direkter Kontakt gegeben ist, dann funktioniert die Solarzelle nicht.“ Gelungen ist dieses Kunststück schließlich, indem man beide Schichten zunächst in Vakuum ausheizte und dann in gewöhnlicher Atmosphäre zusammenfügte. Wasser zwischen den beiden Lagen konnte durch nochmaliges Ausheizen aus dem Schichtsystem entfernt werden.

Das neue Material lässt einen großen Teil des Lichts durch, der absorbierte Anteil wird in elektrische Energie umgewandelt. Man könnte es etwa auf Glasfassaden einsetzen, wo es Licht durchlassen und trotzdem Strom erzeugen würde. Weil es nur aus wenigen Atomlagen besteht, ist das Material extrem leicht (300 m2 des Films wiegen etwa ein Gramm) und sehr flexibel. Um eine höhere Energieausbeute auf Kosten reduzierter Transparenz zu erreichen arbeitet das Team gegenwärtig daran, mehr als zwei Schichten aufeinander zu stapeln.

->Quellen: