Effizienz schon fast bei 20 Prozent
Nicht nur die Stabilität verbesserte sich, auch bei den Wirkungsgraden ging es rasant aufwärts. Inzwischen hat das amerikanische Forschungsinstitut für erneuerbare Energien NREL eine Perowskitzelle mit 17,9 Prozent in seine Rekordliste aufgenommen. An den Fortschritten sind Arbeitsgruppen aus vielen Teilen der Welt beteiligt. Dieser letzte Rekord stammt vom koreanischen Institut für die Chemieindustrie KRICT. Eine kalifornische Gruppe meldet jetzt sogar bereits über 19 Prozent Wirkungsgrad.
Damit liegen die Perowskitzellen, was die Effizienz angeht, inzwischen vor den Farbstoffzellen, die ihnen ursprünglich Pate standen. Deren Wirkungsgradrekord liegt laut NREL-Diagramm bei 11,9 Prozent.
Es liegt an zwei Eigenschaften, welche die Perowskite besonders machen. „Mit ihnen lassen sich hohe Wirkungsgrade erreichen, weil sie eine sehr starke Lichtabsorption besitzen und als halbleitende Pigmente selbst Ladungen transportieren“, erklärt Michael Grätzel. Dadurch kann man die Poren des Titandioxids mit Perowskit auffüllen, so dass teilweise 200 Nanometer dicke Schichten entstehen. Dadurch wird mehr Lichtabsorbiert, was zu einer höheren Stromausbeute führt als bei Farbstoffzellen. Bei Farbstoffzellen kann die aktive Schicht nur ein Farbstoffmolekül dick aufgebracht werden, weil die Farbstoffe keine Ladungen leiten. Grätzel schreibt die Farbstoffzellen allerdings noch lange nicht ab. Deren Stabilität habe sich in den letzten Jahren dramatisch verbessert und im Labor von Hiroshi Segawa an der Universität Tokio sei es auch schon gelungen, einen Wirkungsgrad von 16 Prozent zu erreichen.
Den derzeit gemeldeten höchsten Wert für eine Perowskitzelle von 19,7 Prozent hält übrigens eine planare Zelle, bei der die Materialien – Titandioxid, Perowskit, Lochleiter – als flache, mehr oder weniger glatte Schichten übereinander aufgebracht werden, was ein weiterer großer Schritt nach vorne ist. Die Zelle ist aber noch dermaßen instabil, dass sie selbst unter Inertgas, das Reaktionen mit Sauerstoff verhindert, innerhalb von kurzer Zeit zerfällt. Grätzel und andere Experten haben außerdem Zweifel daran, dass die Leistungen der planaren Zellen exakt gemessen wurden, da an ihnen neue Effekte aufträten, die die Messung störten. Es sei eine Aufgabe für die Zukunft, deren Leistung richtig zu bestimmen.
Noch mehr Innovation nötig – noch zu viel ungeklärt
Trotz der Rekorde am laufenden Band und der Aussicht, kostengünstige Materialien zu verwenden, ist die Technologie noch weit davon entfernt, in der Praxis die Siliziumzellen zu ersetzen. 1.000 oder 10.000 Stunden Haltbarkeit mögen Forscher in Laboren begeistern. Das sind etwas über 400 Tage. Investoren fordern heute aber 20 bis 30 Jahre. Genauso unklar ist, ob die Perowskitzellen auf größeren Flächen hergestellt werden können. Die bisher existierenden Laborzellen sind nur einige Quadratzentimeter klein. Außerdem müsste vermutlich auch noch eine andere Zusammensetzung gefunden werden. Das Blei, das die meisten Laborzellen enthalten, kann zusammen mit Wasser kanzerogenes Bleiiodid bilden. Am besten wäre es, das Element durch ein anderes zu ersetzen.
Michael Grätzel hat Vertrauen in die Forscher, dass sie die offenen Fragen lösen können. Er versteht den derzeitigen Hype um den neuartigen Zelltyp. Mit den bisherigen Arbeiten seien neue Türen geöffnet worden.
Ein Pluspunkt für das Material könnte auch dessen Variabilität sein. Die Bandlücke ist eine Eigenschaft des Materials, die bestimmt, welche spektralen Anteile des Sonnenlichts genutzt werden können. Sie lässt sich bei den Perowskiten leicht variieren und nach den Worten von Martin Green vom Australian Centre for Advanced Photovoltaics „ideal einstellen“. Außerdem scheint das Material in der Verarbeitung sehr robust zu sein. Das erlaubt den Forschern, relativ einfach Veränderungen durchzuführen und mit Verbesserungen zu experimentieren. „Es ist nicht auszuschließen, dass sie einen magischen Ansatz finden, mit dem sie die Stabilität in den Griff bekommen“, sagt Green.
Auch Welmoed Veurman, Wissenschaftlerin im Team von Andreas Hinsch am Fraunhofer ISE in Freiburg, sieht es positiv. „Wir sind in erster Linie daran interessiert, Herstellungsverfahren zu entwickeln, mit denen die Zellen in größerem Maßstab produziert werden könnten“, erklärt sie. Dabei sei es eine sehr gute Voraussetzung, dass die Perowskitzellen mit Lösungen prozessierbar seien. Eventuell sei sogar ein Siebdruck der Zellen möglich. Bei vielen anderen Technologien sind dagegen aufwendige Prozesse nötig, die nur im luftleeren Raum funktionieren.
Martin Green denkt schon weiter. Danach ist die Perspektive nicht unbedingt, Siliziumzellen zu ersetzen, sondern zu verbessern. Das theoretische Wirkungsgrad-Limit für Siliziumsolarzellen aus nur einer aktiven Schicht liegt bei rund 29 Prozent. Mit zwei aktiven Halbleiterschichten mit unterschiedlichen Bandlücken lassen sich schon 42,5 Prozent erreichen. „Die Perowskite eignen sich gut für Tandemzellen zusammen mit Siliziumwafern“, sagt er. Gesetzt den Fall, die anderen Probleme werden gelöst.