Infraroter Laserblitz verändert kurzzeitig Struktur eines Hochtemperatursupraleiters und bricht elektrischen Widerstand schon bei Raumtemperatur
Supraleitung ist ein bemerkenswertes Phänomen: Supraleiter können elektrischen Strom ohne jeden Widerstand und damit völlig verlustfrei transportieren. In manchen Nischen kommen sie bereits zum Einsatz, etwa als Magneten für Kernspintomographen oder Teilchenbeschleuniger. Allerdings müssen die Materialien dafür auf sehr tiefe Temperaturen gekühlt werden. Doch im vergangenen Jahr sorgte ein Experiment für eine Überraschung. Mit Hilfe von kurzen Infrarot-Laserblitzen war es Forschern erstmals gelungen, eine Keramik bei Raumtemperatur supraleitend zu machen – wenn auch nur für wenige millionstel Mikrosekunden.
Jetzt stellte ein internationales Team, an dem Physiker des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg maßgeblich beteiligt waren, in den Fachmagazinen Physical Review B und Nature eine mögliche Erklärung des Effekts vor: Demnach führen die Laserblitze zu kurzzeitigen Verschiebungen einzelner Atome des Kristallgitters und stärken dadurch die Supraleitung. Die Erkenntnisse könnten bei der Entwicklung von Materialien helfen, die bei deutlich höheren Temperaturen supraleitend werden und dadurch für neue Anwendungen interessant wären.
Ursprünglich kannte man Supraleitung nur in einigen Metallen, und zwar bei Temperaturen knapp oberhalb des absoluten Nullpunkts bei minus 273 Grad Celsius. Doch in den achtziger Jahren entdeckten Physiker eine neue Klasse, basierend auf keramischen Materialien. Diese leiten Strom bereits bei Temperaturen von etwa minus 200 Grad Celsius verlustfrei, deshalb bezeichnet man sie als Hochtemperatursupraleiter. Eine dieser Keramiken ist die Verbindung Yttriumbariumkupferoxid (YBCO). Sie zählt zu den aussichtsreichsten Materialien für technische Anwendungen wie supraleitende Kabel, Motoren und Generatoren.
Der YBCO-Kristall hat eine spezielle Struktur: Dünne Doppelschichten aus Kupferoxid wechseln sich mit dickeren Zwischenlagen ab, die neben Kupfer und Sauerstoff auch Barium enthalten. Ausgangspunkt der Supraleitung sind die dünnen Kupferdioxid-Doppelschichten. Hier können sich Elektronen zu sog. Cooper-Paaren zusammenfinden. Diese Paare können zwischen verschiedenen Lagen „tunneln“, können diese Lagen bildlich gesprochen durchqueren wie Geister eine Wand – ein typischer Quanteneffekt. Supraleitend wird der Kristall allerdings erst unterhalb einer „kritischen Temperatur“. Erst dann nämlich tunneln die Cooperpaare nicht nur innerhalb der Doppelschichten, sondern „spuken“ auch durch die dickeren Lagen hindurch zur nächsten Doppelschicht. Oberhalb der kritischen Temperatur fehlt diese Kopplung zwischen den Doppelschichten, das Material wird ein schlecht leitendes Metall.