Savannen und Buschland wichtiger für CO2-Haushalt als gedacht

Savannen dominieren die Schwankungen der Landvegetation als Kohlenstoffsenke

Seit mehr als 50 Jahren nimmt die Landvegetation mehr Kohlendioxid aus der Atmosphäre auf, als sie wieder abgibt. Ändert sich diese Senken-Funktion, ist auch der CO2-Gehalt der Atmosphäre und damit das Klima betroffen. Wissenschaftler des Max-Planck-Instituts für Biogeochemie haben nun den Beitrag verschiedener Ökosysteme untersucht: Während Waldökosysteme die Gesamtstärke der Kohlenstoffsenke bestimmen, sind halbtrockene Ökosysteme wie Savannen und Buschland für den Großteil ihrer jährlichen Schwankungen hauptverantwortlich.

Erstmals wird damit auch die Bedeutung regionaler Variationen des Niederschlags für die CO2-Aufnahme von Savannen und Buschland, und damit für den globalen Kohlenstoffkreislauf aufgezeigt. Die Studie erscheint in der Science-Ausgabe vom 22. Mai.

Rauchentwicklung bei Bitterfeld – Foto © Gerhard Hofmann, Agentur Zukunft

Erdsystemforscher versuchen weltweit, die Zunahme des Treibhausgases CO2 in der Atmosphäre, und die damit zu erwartende Klimaentwicklung zu erklären und vorherzusagen. Im Rahmen des natürlichen CO2-Austauschs nahmen die pflanzlichen Ökosysteme der Landflächen in den letzten 50 Jahren mehr Kohlenstoff aus der Atmosphäre auf, als sie wieder abgaben; sie wirkten als sogenannte Kohlenstoffsenke. Berechnungen zufolge wird im langfristigen Mittel dadurch etwa ein Viertel der anthropogen verursachten CO2-Emissionen klima-neutral in der Landvegetation gebunden.

Die Bilanz des natürlichen CO2-Austauschs zwischen dem Land und der Atmosphäre resultiert im Wesentlichen aus der pflanzlichen Aufnahme des atmosphärischen CO2 durch Photosynthese, und der Abgabe von CO2 durch Atmungsprozesse in der Vegetation und im Boden. Feuer und andere seltene Extremereignisse setzen ebenfalls CO2 in die Atmosphäre frei, sind im globalen, langfristigen Mittel gesehen aber von untergeordneter Bedeutung. Kleine Veränderungen in diesen Flüssen sind daher hauptverantwortlich für die beträchtlichen jährlichen Schwankungen der globalen CO2-Zunahme in der Atmosphäre. Diese Schwankungen überlagern den anthropogen verursachten Anstieg der CO2-Konzentration durch die Verbrennung fossiler Energieträger.

Doch wie genau entstehen die jährlichen Abweichungen, welche Ökosysteme sind hierfür verantwortlich?

Frühere Bestandsaufnahmen deuten darauf hin, dass der Großteil des Kohlenstoffs, den die Landvegetation seit der Industrialisierung aufnahm, wahrscheinlich in den Wäldern der Tropen und der gemäßigten Zonen gespeichert wurde. Um diese Frage genauer zu beantworten sowie den Beitrag klimatisch sowie regional unterschiedlicher Ökosysteme zu untersuchen, stellte ein internationales Forscherteam zusammen mit Wissenschaftlern des Max-Planck-Instituts für Biogeochemie in Jena neue Berechnungen an: Mithilfe verschiedener globaler Ökosystemmodelle und gemessener atmosphärischer CO2-Daten wurde zunächst die geographische Verteilung der Kohlenstoffbilanz der letzten 30 Jahre bestimmt. Nach Zuordnung der geographisch lokalisierten CO2-Bilanz zu verschiedenen Vegetationsklassen (z.B. tropische Wälder, halb-trockene Ökosysteme) zeigte sich zunächst ein erwarteter Befund: „Waldökosysteme, also tropische Regenwälder wie auch die Wälder in unseren Breiten, machen den größten Anteil der gesamten CO2-Aufnahme in die Landökosysteme aus“, sagt Dr. Sönke Zaehle, Gruppenleiter und einer der Autoren vom Max-Planck-Institut für Biogeochemie.

Die Forscher kamen jedoch auch zu einer überraschenden neuen Erkenntnis: Die jährlichen Schwankungen der globalen Kohlenstoffaufnahme kamen nicht vorwiegend aus den Gebieten, die viel Kohlenstoff aufnehmen, sondern aus halb-trockenen Ökosysteme (Savannen und Buschland). „Obwohl sie nur ein Fünftel zur Kohlenstoffsenke der Landvegetation beitragen, sind Savannen und Buschland in etwa für die Hälfte der jährlichen Schwankungen der Kohlenstoffbilanz der Landökosysteme verantwortlich.“, ergänzt Prof. Markus Reichstein, Direktor am Max-Planck-Institut für Biogeochemie. Ausschlaggebend hierfür ist die Stärke ihrer photosynthetischen CO2-Fixierung, die gerade in halbtrockenen Gebieten von Schwankungen des Niederschlags stark abhängt.

Die neuen Erkenntnisse zeigen also, dass die Savannen und Buschland-Regionen einen entscheidenden Beitrag zu Abweichungen der globalen CO2-Bilanz leisten; wissenschaftlich sind sie bisher aber wenig untersucht. Der Koautor Benjamin Smith, Professor für Ökosystemwissenschaften an der Lund Universität, Schweden, fasst zusammen: Die Studie betont eindeutig wie wichtig es ist, unsere Aufmerksamkeit auf Savannen und andere klimatisch eher trockene Ökosysteme zu wenden. Sie sind charakteristisch für Landschaften einiger ärmerer Länder unserer Erde und wurden bisher in klimapolitischen Diskussionen weitgehend vernachlässigt.

->Quellen:

  • bgc-jena.mpg.de
  • Original-Veröffentlichung: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
    Anders Ahlström, Michael R. Raupach, Guy Schurgers, Benjamin Smith, Almut Arneth, Martin Jung, Markus Reichstein, Josep G. Canadell, Pierre Friedlingstein, Atul K. Jain, Etsushi Kato, Benjamin Poulter, Stephen Sitch, Benjamin D. Stocker, Nicolas Viovy, Ying Ping Wang, Andy Wiltshire, Sönke Zaehle, Ning Zeng, Science. DOI: 10.1126/science.aaa1668