Im starken elektrischen Feld dringt weniger Licht durch die Faser
Um die Stärke eines elektrischen Feldes zu messen, machten sich die Erlanger Forscher zunutze, dass sich das Kügelchen durch Reibung an anderen Kügelchen elektrisch aufgeladen hat, ehe sie es durch die hohle Faser schicken. Daher wird es in einem elektrischen Feld von der Mitte des Kanals an dessen Rand gelenkt, wodurch es mehr Laserlicht zur Seite reflektiert als in der Normalposition. Diese Lichtabschwächung misst eine Photodiode an einem Ende der Faser. Die Größe des Verlustes ist dabei proportional zur Stärke des elektrischen Feldes, das sich auf diese Weise aus der Ferne bestimmen lässt.
Um herauszufinden, wie gut aufgelöst sich mit dem fliegenden Kügelchen die räumliche Verteilung der Feldstärke messen lässt, führten die Forscher die Glasfaser an sehr feinen Elektroden vorbei, deren dünnste nur 200 Mikrometer (ein Mikrometer entspricht einem Tausendstel Millimeter) maß. Tatsächlich bildeten die Forscher die feine Struktur der Elektroden mit dem ihrem faseroptischen Messinstrument präzise ab. „Auf ähnliche Weise könnten mit einem magnetischen Kügelchen magnetische Felder äußerst genau vermessen werden“, sagt Dmitry Bykov, Doktorand am Erlanger Max-Planck-Institut und Erstautor der Studie. Auch Vibrationen ließen sich auf die gleiche Weise bestimmen, da sie das Teilchen ebenfalls aus der Mitte der Faser ablenken. Unterscheiden lassen sich elektrische Felder und Vibrationen durch das Verhalten verschieden stark geladener Kügelchen.
Demonstriert haben Bykov und seine Kollegen auch, dass ihre PCF die Temperatur messen kann. Dafür nutzen sie den Umstand, dass die Zähigkeit der Luft mit steigender Temperatur abnimmt, und das Teilchen somit schneller durch den Kanal der Faser wandert. Um seine Geschwindigkeit zu messen, beleuchten die Physiker das Kügelchen mit einem zusätzlichen schwachen Laser. Dabei nutzen sie den Doppler-Effekt aus, der von vorbeifahrenden Autos bekannt ist. Deren Geräusche klingen höher, wenn sie sich uns nähern, als wenn sie sich von uns entfernen. Ähnlich wie die Wellenlänge der Schallwellen verhalten sich auch Wellenlängen des Lichts, wenn dieses von bewegten Objekten ausgesendet wird.
Mit fluoreszierenden Kügelchen zum Sensor für Radioaktivität
In ihrem Experiment heizten die Forscher einen Teil der Faser mit einem Ofen auf Temperaturen von mehreren hundert Grad Celsius. Diese Temperaturen konnten sie auf etwa fünf Grad genau gemessen. Die Ortsgenauigkeit lag bei dieser Methode wegen Schwankungen in der Geschwindigkeit nur bei einigen Zentimetern. „Mittels eines rotierenden Teilchens, dessen Rotationsfrequenz von der Zähigkeit der Luft abhängt, könnte man aber auch auf Mikrometer genau messen“, erklärt Euser.
„Als nächstes wollen wir den Radioaktivitätssensor realisieren“, sagt Bykov. Dafür möchten die Forscher fluoreszierende Kügelchen verwenden, die absorbierte radioaktive Strahlung in Form von sichtbarem Licht wieder aussenden. Aufschluss über die Stärke der Radioaktivität am Ort des Kügelchens gäben dann die Änderungen in der Intensität der Fluoreszenz.
Bykov sieht großes Potenzial in der neuen Technik. Die Ortsauflösung sei theoretisch nur durch die Größe der Partikel begrenzt. Mit Hilfe von Nanopartikeln lasse sich somit nanometergenau messen, also im Größenbereich von Viren. Die maximale Länge der Sensorfaser liegt derzeit bei ca. 400 Meter. Denn das Laserlicht unterliegt bei der Übertragung in der PCF Verlusten, weshalb sich die Glaskügelchen ab einer gewissen Länge nicht mehr festhalten lassen. Es gibt aber auch PCFs mit deutlich geringeren Verlusten. Mit diesen könnte die Reichweite der Fasersensoren auf mehrere zehn Kilometer erhöht werden.
Tijmen Euser sieht daher eine Vielzahl an weiteren Einsatzmöglichkeiten, insbesondere, wenn Messungen unter rauen Bedingungen und großen Entfernungen vorgenommen werden müssen. „Ein Beispiel für mögliche Anwendungen sind Ölpipelines“, sagt der Physiker. Messungen der Vibration könnten hier frühzeitig Schäden etwa durch Sabotage aufdecken. Aber auch entlang von Hochspannungsleitungen oder in Umspannwerken könnten die Sensoren nützlich sein. Hier ließen sich elektrische Felder, Vibrationen und Temperaturen und damit drei Größen, die in diesen Anlagen relevant sind mit einem einzigen Messinstrument aufzeichnen. (CJM)
->Quelle: mpl.mpg.de