Struktur des Protons immer dynamischer, je höher die Energie
Dabei analysierten die Wissenschaftler die Wahrscheinlichkeit für verschiedene Verhaltensweisen dieser Lepton-Proton-Streuprozesse an beiden Experimenten und verglichen ihre Ergebnisse mit der bestmöglichen Beschreibung der Struktur des Protons, der Theorie der Quantenchromodynamik (QCD). Ergebnis: Die HERA-Ergebnisse stimmen ideal mit der QCD-Theorie überein und zeigen dabei, dass die Struktur des Protons immer dynamischer wird,je höher die Energie ist, bei der sie erkundet wird.
Als weiteres Ergebnis können die HERA-Daten eindrucksvoll belegen, dass sich die elektromagnetische und die schwache Kraft bei extrem hohen Energien vereinigen, wie es vom Standardmodell der Teilchenphysik vorhergesagt wird. Diese Erkenntnis stützt die Vermutung der Physiker dass diese beiden Kräfte zwei Seiten derselben Medaille sind, obwohl die elektromagnetische Kraft bei niedrigen Energien viel stärker ist als die schwache Kraft. Dieses Ergebnis weist vielleicht am Ende sogar den Weg zur Vereinheitlichung aller vier Grundkräfte der Natur.
In den HERA-Daten konnten die Physiker die beiden Kräfte anhand der Art der Trägerteilchen identifizieren, die die Kräfte vermitteln: Während die elektromagnetische Kraft durch das neutrale Photon vermittelt wird, hat die schwache Kraft sowohl ein neutrales als auch zwei geladene Trägerteilchen, die sogenannten Z- und W-Bosonen. Bei hohen Kollisionsenergien zeigen die H1- und ZEUS-Daten, dass sich beide Kräfte absolut gleich verhalten – ein deutlicher Hinweis auf die elektroschwache Vereinigung.
„Durch die Kombination der Messungen von beiden Detektoren erreichen wir die höchstmögliche Präzision unserer Ergebnisse“, sagt H1-Sprecher Stefan Schmitt (DESY). „Die kombinierten Daten profitieren nicht nur von der verbesserten Statistik, sondern auch von einem besseren Verständnis jeder einzelnen Messung und von der Interkalibration, die sich dadurch ergibt, dass beide Wissenschaftlergruppen unterschiedliche Detektoren und experimentelle Techniken für ihre Messungen nutzten.“ Allerdings ist die Kombination der Daten aus genau diesem Grund enorm aufwendig – sie wurden von unterschiedlichen Teilchendetektoren aufgezeichnet, mit verschiedenen Techniken analysiert und über einem Zeitraum von 15 Jahren gesammelt. „Jeder der Datenpunkte hat bis zu 20 Unsicherheitsquellen, und bei der Kombination der Daten kann jede der 20 Quellen mit den Unsicherheiten des nächsten Datenpunktes in Beziehung gebracht werden, und alle diese Beziehungen müssen verstanden werden“, sagt ZEUS-Sprecher Matthew Wing (University College London).
Folgt: Immer noch Rätsel