Gut verdrahtet

Klimagas Methan im Meeresboden

In den tiefen Schichten des Meeresbodens bildet sich Methan aus abgestorbener Biomasse. Dieses Gas steigt zunächst auf, doch noch vor dem Austritt ins Meer wird es im Meeresboden durch ganz spezielle Gemeinschaften (Konsortien) von bestimmten Typen von Bakterien und Archaeen abgebaut. Die Archaeen nehmen das Methan auf und oxidieren es zu Karbonat. Dabei entstehende Energie muss den Partnerbakterien übergeben werden, damit der Prozess ablaufen kann. Die Bakterien veratmen dann statt Sauerstoff Sulfat, um ebenfalls Energie zu gewinnen (Sulfatreduzierer). Die Form des Transfers war bis vor kurzem unbekannt. Dieser Prozess findet wahrscheinlich seit Milliarden von Jahren statt, und hat schon den Methangehalt in der sauerstofffreien Atmosphäre der jungen Erde beeinflusst.

Dr. Gunter Wegener, zusammen mit der Doktorandin Viola Krukenberg Erstautor der jetzt publizierten Nature-Studie: „Unser Team hat sich besondere AOM-Konsortien angeschaut, die bei 60 Grad Celsius leben. Hier gelang es erstmals, das Partnerbakterium allein wachsen zu lassen. Dann haben wir diese Kultur und die AOM-Kultur systematisch unter verschiedenen Bedingungen getestet und verglichen. Wir wollten wissen, welche Stoffe als Energieträger zwischen den Archaeen und dem Sulfatreduzierer in Frage kommen.“
Die meisten Verbindungen konnten die Forscher schnell ausschließen. Gaben die Forscher jedoch Wasserstoff und Methan gemeinsam zu den Konsortien, wurde kein Methan mehr abgebaut, stattdessen nutzten die Sulfatreduzierer den Wasserstoff. Erst als dieser aufgebraucht war, lief die Methanoxidation wieder an. Wasserstoff kam als Intermediat in Betracht, nur produzierten Archaeen nicht ausreichend davon, um das Wachstum der Sulfatreduzierer zu erklären.

Direkte Stromkabel und Elektronentransporter

Es blieb als mögliche Alternative eine direkte Stromverbindung zwischen den Zellen. Für die AOM-Kulturen traf diese Vermutung ins Schwarze. Dietmar Riedel, Leiter der Elektronenmikroskopie am Göttinger MPI sagt:
„Die Schwierigkeit bestand darin, diese Verbindungen auch morphologisch nachzuweisen. Um die Strukturen nachzuweisen, mussten die Proben unter Hochdruck gefroren und in Epoxidharz eingebettet werden. Danach konnten ultradünne Schnitte der so präparierten Probe in nahezu nativen Zustand am Transmissionselektronenmikroskop untersucht werden.“ Viola Krukenberg ergänzt: „Wir haben alle notwendigen Gene für den Elektronentransport gefunden und gezeigt, dass sie durch Methan und Sulfat aktiviert werden.“ Mit Methan als Energiequelle wachsen kabelartige Strukturen, so genannte Pili, von den Bakterien zu den Archaeen und docken dort an.

Die Kabel sind bis zu mehrere Mikrometer lang, also länger als eine Zelle. Sie sind mit wenigen Nanometern aber sehr dünn. Die Kabel schaffen den Kontakt zwischen den eng benachbarten Zellen und erklären auch die räumliche Struktur des Konsortiums, wie von einem Team von Forschern um Victoria Orphan von Caltech in der gleichen Nature-Ausgabe gezeigt wurde. Wie die Forschung über diese Nano-Stromnetze weitergehen soll, fasst Arbeitsgruppenleiterin Prof. Antje Boetius zusammen: „In der Natur gibt es eine erhebliche Vielfalt von den Archaea-Bakterien-Konsortien. Der nächste Schritt ist zu schauen, ob die Stromkabel auch bei anderen Konsortien vorkommen. Wir möchten verstehen, wie diese Gemeinschaften funktionieren und wie sie ihren Stoffwechsel regeln, weil dadurch entscheidende Prozesse in der Natur gesteuert werden.“

Publikation:

->Quellen: