Helmholtz-Zentrum meldet 18 Prozent für monolithische Tandem-Solarzelle
Erstmals ist es Teams aus dem Helmholtz-Zentrum Berlin und der École Polytechnique Fédérale de Lausanne, Schweiz, gelungen, eine Silizium-Hetero-Solarzelle mit einer Perowskit-Solarzelle monolithisch – in einem Block – zu kombinieren. Die hybride Tandemzelle erreichte einen Wirkungsgrad von 18 Prozent. Das ist derzeit der höchste publizierte Wert für einen solchen Aufbau. Perspektivisch könnten sogar Wirkungsgrade von bis zu 30 Prozent möglich sein.
Das organisch-anorganische Material Perowskit ist eine der größten Überraschungen in der Solarzellenforschung: In nur sechs Jahren hat sich der Wirkungsgrad von Perowskit-Solarzellen verfünffacht, darüber hinaus können Perowskit-Schichten aus Lösung hergestellt und in Zukunft kostengünstig auf großer Fläche gedruckt werden.
Interessant aber schwer zu kombinieren: Perowskit mit Silizium
Weil Perowskit-Schichten das Licht im blauen Spektrum sehr effizient nutzen, ist es interessant, sie mit Silizium-Schichten zu kombinieren, die vor allem das langwellige, rote und nahinfrarote Licht umwandeln. Doch praktisch ist der Bau solcher monolithischer Tandemzellen aus einer Abfolge von aufeinander abgeschiedenen Schichten schwierig: Denn um hohe Effizienzen zu erhalten, werden die Perowskite üblicherweise auf Titandioxidschichten aufgeschleudert, die zuvor bei knapp 500 Grad Celsius gesintert werden müssen. Solche Temperaturen vertragen jedoch die amorphen Siliziumschichten nicht, die bei Hetero-Siliziumzellen den kristallinen Siliziumwafer bedecken.
Neue funktionale Schichten machen es möglich
Nun hat ein Team um Prof. Dr. Bernd Rech und Dr. Lars Korte vom HZB-Institut für Siliziumphotovoltaik in Zusammenarbeit mit dem PVcomB und einer Gruppe um Prof. Dr. Michael Graetzel von der Éole Polytechnique Fédérale de Lausanne (EPFL) erstmals eine solche monolithische Tandemzelle hergestellt: Es gelang, auf der Hetero-Siliziumzelle mit einem schonenden Verfahren eine Zinndioxid-Lage bei kleinen Temperaturen abzuscheiden; auf diese Unterlage konnte dann eine dünne Perowskit-Schicht aufgeschleudert und mit einem Lochleitermaterial bedeckt werden.
Ein weiteres Schlüsselelement dieser Zellarchitektur ist der transparente Topkontakt: Die dafür notwendigen Metalloxide werden durch Kathodenzerstäubung (Sputtern) abgeschieden und würden unter üblichen Bedingungen die sensible Perowskit-Schicht sowie den Lochleiter zerstören. Hier hat das Team vom HZB das Verfahren modifiziert und eine transparente Schutzschicht eingebaut.