„Wir wollen CO2 als Kohlenstoffquelle erschließen“
Ein Gespräch mit dem Forscher darüber, welche Bedeutung dieser Prozess für den Klimaschutz haben könnte, welche Hürden die Forscher auf dem Weg dorthin nehmen mussten und welche Perspektiven die Synthetische Biologie hat.
Ein synthetischer Stoffwechselweg, den Tobias Erb und seine Mitarbeiter am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg entwickelt haben, wandelt CO2 aus der Luft effizienter in eine organische Substanz um, als das Pflanzen in der Fotosynthese gelingt. Wir sprachen mit dem Forscher darüber, welche Bedeutung dieser Prozess für den Klimaschutz haben könnte, welche Hürden die Forscher auf dem Weg dorthin nehmen mussten und welche Perspektiven die Synthetische Biologie hat.
Gibt es mit dem synthetischen Stoffwechselweg, der CO2 bindet, jetzt ein wirksames Mittel den Klimawandel einzudämmen?
Zunächst einmal wollen wir die grundlegenden biologisch-chemischen Prinzipien verstehen, wie gasförmiges CO2 in organische Moleküle umgewandelt werden kann. Unsere Motivation ist primär nicht, den Klimawandel zu stoppen. Wir wollen atmosphärisches CO2 mit biologischen Methoden als Kohlenstoffquelle der Zukunft erschließen. Dass wir dabei zu einem CO2-neutralen Prozess kommen oder gar einem Verfahren, das CO2 aus der Atmosphäre entfernt und sich positiv auf das Klima auswirkt, ist ein toller Nebeneffekt.
Ich glaube jedoch, dass es viele Wege gibt, den Klimawandel aufzuhalten. Der einfachste beginnt damit, jeden Tag Energie zu sparen. Ich glaube aber auch, dass wir die Biologie der CO2-Fixierung nutzen und verbessern können. Designer-Stoffwechselwege, die pro umgesetztem CO2-Molekül zum Beispiel weniger Energie verbrauchen oder CO2 aus der Luft schneller binden, sind sicher ein interessanter Ansatz, um eine CO2-basierte Biotechnologie zu schaffen.
Wie nah dran an der Anwendung sind Sie mit dem Prozess bereits?
Unsere Arbeit ist in erster Linie immer noch reine Grundlagenforschung. Wir konnten zum ersten Mal im Reagenzglas einen grundlegenden Prozess des Lebens – die Umwandlung von CO2 in organische Substanzen neu erfinden. Wir haben damit quasi ein metabolisches Organ im Reagenzglas geschaffen. Dieses metabolische Organ in lebende Organismen zu transplantieren, ist aber eine völlig andere Herausforderung.
Worin besteht die Herausforderung bei einer solchen Transplantation in lebende Zellen?
Wir können nicht vorhersagen, wie sich unser Zyklus, der aus 17 Reaktionen besteht, in einer Zelle verhalten wird, in der 3.000 verschiedene Reaktionen gleichzeitig ablaufen. Eine erfolgreiche Transplantation wird sicher viel Zeit brauchen. Die Max-Planck-Gesellschaft bietet mir und meiner Gruppe aber die Möglichkeit, dass wir uns diesem nächsten, schwierigen Schritt widmen können. Das Ergebnis ist dabei jedoch völlig offen. Obwohl unsere Berechnungen grundsätzlich vermuten lassen, dass unser neuer Weg energieeffizienter funktionieren könnte als natürliche Stoffwechselwege in Pflanzen, müssten wir das im Experiment erst einmal nachweisen.
Folgt: Worin lagen die größten Schwierigkeiten, den synthetischen Stoffwechselweg zu entwickeln?