Zweite Experimentrunde mit Wendelstein 7-X erfolgreich

Fusion begann plangemäß nächste Umbau-Phase – neue Stellarator-Rekorde erreicht

Die von Juli bis November an der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald gelaufenen Experimente brachten höhere Werte für die Dichte und den Energieinhalt des Plasmas sowie lange Entladungsdauern bis zu 100 Sekunden – Rekordergebnisse für Anlagen vom Typ Stellarator. Inzwischen hat die nächste Runde des schrittweisen Ausbaus von Wendelstein 7-X begonnen. Sie soll die Anlage fit machen für höhere Heizleistungen und längere Entladungen. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung dieses Bautyps untersuchen.

Blick in das Plasmagefäß der Fusionsanlage Wendelstein 7-X – Foto © Bernhard Ludewig, IPP

Im Verlauf der schrittweisen Aufrüstung von Wendelstein 7-X wurde das Plasmagefäß seit September des vergangenen Jahres mit einer Innenverkleidung ausgestattet. Kacheln aus Grafit schützen seither die Gefäßwände. Hinzu kam der sogenannte Divertor, mit dem sich Reinheit und Dichte des Plasmas regeln lassen. In zehn breiten Streifen an der Wand des Plasmagefäßes folgen die Divertor-Kacheln der Kontur des Plasmarandes. Sie bedecken speziell die Wandbereiche, auf die Teilchen aus dem Rand des Plasmas gezielt gelenkt werden. Nach drei Monaten des Experimentierens mit der neuen Ausrüstung begann Ende 2017 die nächste Ausbau-Runde; unter anderem wurden neue Messgeräte und Heizsysteme installiert. Ab Juli 2018 wurden die Experimente wieder aufgenommen.

Hatte der Divertor bereits zuvor seine gute Wirkung gezeigt, so konnten die Plasmawerte mit der aufgestockten Plasmaheizung und gereinigten Gefäßwänden jetzt deutlich gesteigert werden. Die neu installierte Neutralteilchen-Heizung schießt schnelle Wasserstoffatome in das Plasma hinein, die ihre Energie über Stöße an die Plasmateilchen abgeben. Das Ergebnis waren hohe Plasmadichten bis zu 2 x 10**20 Teilchen pro Kubikmeter – Werte, wie sie für ein künftiges Kraftwerk ausreichen. Zugleich erreichten die Ionen und Elektronen des Wasserstoff-Plasmas die beachtliche Temperatur von 20 Millionen Grad Celsius.

Stellarator-Rekordwerte konnte Wendelstein 7-X für die im Plasma gespeicherte Energie erzielen: Mit starker Mikrowellen-Heizung überstieg der Energieinhalt des Plasmas erstmalig ein Megajoule, ohne dass die Gefäßwand zu heiß wurde. Bei guten Plasmakenngrößen gelangen zudem langlebige Plasmen von 100 Sekunden Dauer – ebenfalls einer der bislang besten Stellarator-Werte.

Diese erfreulichen Resultate brachten dem Projekt große Aufmerksamkeit auf den diesjährigen internationalen Konferenzen. Auch Bundesforschungsministerin Anja Karliczek ließ es sich nicht nehmen, die Ergebnisse zu kommentieren: „Glückwunsch an das Team des Wendelstein 7-X zu dem neuen Weltrekord. Der Weg ist richtig – so konnten wichtige Erkenntnisse für den künftigen Einsatz von Fusionskraftwerken gewonnen werden. Fusionsenergie könnte neben den Erneuerbaren Energien DIE Energiequelle der Zukunft sein. Die Forscher in Greifswald haben mit ihrer Arbeit dazu einen wichtigen Schritt getan. Ich wünsche dem Team viel Erfolg auch bei seinen weiteren Arbeiten.“

Mitte Oktober liefen die letzten Experimente; inzwischen hat die nächste Ausbaurunde an Wendelstein 7-X begonnen. Um die Heizenergie weiter steigern zu können, ohne die Gefäßwand zu überlasten, werden in den kommenden zwei Jahren die jetzigen Graphitplatten des Divertors durch wassergekühlte Elemente aus kohlenstofffaserverstärktem Kohlenstoff ersetzt. So ausgerüstet, wird man sich schrittweise an 30 Minuten andauernde Plasmen heranarbeiten. Dann lässt sich überprüfen, ob Wendelstein 7-X seine Optimierungsziele auch im Dauerbetrieb – dem wesentlichen Plus der Stellaratoren – erfüllen kann.

Hintergrund: 

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Den magnetischen Käfig von Wendelstein 7-X erzeugt ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen. Obwohl Wendelstein 7-X keine Energie erzeugen wird, soll die Anlage beweisen, dass Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll die Qualität des Plasmaeinschlusses in einem Stellarator erstmals das Niveau der konkurrierenden Anlagen vom Typ Tokamak erreichen. (Isabella Milch)

->Quelle: Max-Planck-Institut für Plasmaphysik (IPP)