Iodidsalze machen Biokatalysatoren für Brennstoffzellen stabil
Iodidsalze als Schlüssel zum nachhaltigen Erfolg biologischer Katalysatoren in Brennstoffzellen? Der massenhafte Einsatz von Brennstoffzellen könnte Großkraftwerke und Hochspannungsleitungen überflüssig machen, Autos abgasfrei fahren lassen und Hausbesitzer zu Stromproduzenten werden lassen. Aber: Die eine Art von Katalysatoren – Edelmetalle wie Platin – ist sehr teuer und die Ressourcen werden immer kleiner. Die zweite Art wäre im Überfluss vorhanden: nämlich biologische und bio-inspirierte Katalysatoren. Trotzdem werden diese natürlichen Katalysatoren bisher kaum für Energieumwandlungsprozesse eingesetzt. Denn diese Katalysatoren sind mitunter so empfindlich gegenüber Sauerstoff, dass sie binnen weniger Sekunden ihre Funktion einstellen. Das könnte sich jetzt, einer Medienmitteilung der Ruhr-Universität Bochum (RUB) folgend ändern.
Denn Sauerstoff ist der größte Feind von Biokatalysatoren für die Energieumwandlung. Ein Schutzfilm schirmt sie ab – aber nur mit einer weiteren Zutat: Iodidsalz. Ein Forschungsteam des Exzellenzclusters Resolv an der RUB hat herausgefunden warum: Es bildet sich Wasserstoffperoxid am Schutzfilm. Die Zugabe von Iodidsalzen zum Elektrolyten kann das verhindern und die Lebensdauer der Katalysatoren erheblich verlängern. Das Team um Prof. Nicolas Plumeré von Resolv, Erik Freier vom Leibniz-Institut für Analytische Wissenschaften Dortmund und Prof. Wolfgang Lubitz vom Max-Planck-Institut für chemische Energieumwandlung in Mülheim berichtet in Nature Communications vom 14.02.2020.
Binnen Sekunden deaktiviert
Biologische und bio-inspirierte Katalysatoren sind im Überfluss vorhanden, und ihre katalytische Leistung kommt der von Edelmetallkatalysatoren nahe. Trotzdem werden sie nicht flächendeckend für Energieumwandlungs-Prozesse eingesetzt. Der Grund dafür ist ihre Instabilität. „Einige der aktivsten Katalysatoren für die Umwandlung kleiner Moleküle, die für nachhaltige Energiesysteme relevant sind, sind gegenüber Sauerstoff so empfindlich, dass sie binnen Sekunden vollständig deaktiviert werden, wenn sie damit in Kontakt kommen“, erklärt Nicolas Plumeré.
Unendlicher Schutz – bisher nur in der Theorie
Vor Kurzem hatte die Arbeitsgruppe entdeckt, dass redoxaktive Filme bioinspirierte und sogar Biokatalysatoren wie Hydrogenasen davor schützen können. Theoretische Modelle sagen voraus, dass der Schutz vor Sauerstoff unendlich lange anhalten sollte. In Experimenten wirkt dieser Schutz jedoch bisher nur wenige Stunden. „Das steht im Widerspruch zu unseren theoretischen Berechnungen und lässt sich auch angesichts der Lebensdauer desselben Katalysators in einer sauerstofffreien Umgebung nicht erklären“, so Plumeré. Letztere beträgt bei konstantem Umsatz bis zu sechs Wochen.
Kombination von Methoden geht dem Problem auf den Grund
Die Forscher schlossen daraus, dass entweder der Mechanismus für den Schutz vor Sauerstoff noch nicht verstanden ist oder dass neben der Deaktivierung durch Sauerstoff zusätzliche schädliche Prozesse stattfinden. Um dem nachzugehen, kombinierten sie verschiedene Methoden, die es ihnen erlaubten, genau zu untersuchen, was in der schützenden Schicht passiert. Die Kombination von konfokaler Fluoreszenzmikroskopie und kohärenter Anti-Stokes-Raman-Streuung, die im Labor von Erik Freier durchgeführt wurden, mit Elektrochemie für die Analyse der Schutzmatrix zeigten: Der Schutzprozess führt zu einer Ansammlung von Wasserstoffperoxid, die eine Schädigung des katalytischen Films fördert.
Wasserstoffperoxidbildung unterdrücken
Das Forschungsteam konnte nachweisen, dass die Aufspaltung von Wasserstoffperoxid mithilfe von Iodidsalzen die Halbwertszeit einer Hydrogenase für die Wasserstoffoxidation bei konstantem Umsatz auf bis zu eine Woche erhöht, selbst wenn konstant hohe Sauerstoffkonzentrationen darauf einwirken. „Insgesamt bestätigen unsere Daten die Theorie, dass Redox-Filme sauerstoffempfindliche Katalysatoren
völlig immun gegen die direkte Deaktivierung durch Sauerstoff machen“, fasst Plumeré zusammen. „Es ist aber sehr wichtig, auch die Wasserstoffperoxid-Produktion zu unterdrücken, um einen vollständigen Schutz vor oxidativem Stress zu erreichen.“
„Unsere Arbeit zeigt, dass die einfache Strategie der Zugabe von Iodidsalzen zum Elektrolyten ausreichen kann, um die Inaktivierungsraten von Biokatalysatoren deutlich zu senken“, so die Forscher. Das ermöglicht nach ihrer Einschätzung die flächendeckende Umsetzung anderer elektrokatalytischer Prozesse in realen Anwendungen. Dazu gehören auch Energieumwandlungsprozesse wie die solare Brennstofferzeugung durch Kohlendioxidreduktion und die Elektrosynthese von Fein- oder Grundchemikalien wie Ammoniak.
->Quellen und mehr
- news.rub.de/iodidsalze-machen-biokatalysatoren-fuer-brennstoffzellen-stabil
- isas.de/schutz-fuer-biokatalysatoren-rub-und-isas-bringen-iodidsalze-ins-spiel
- Huaiguang Li, Ute Münchberg, Alaa A. Oughli, Darren Buesen, Wolfgang Lubitz, Erik Freier, Nicolas Plumeré: Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films, in: Nature Communications, 2020, DOI: 10.1038/s41467-020-14673-7
- Huaiguang Li, Darren Buesen, Sebastien Dementin, Christophe Léger, Vincent Fourmond, Nicolas Plumeré: Complete Protection of O2-Sensitive Catalysts in Thin Films, in: Journal of the American Chemical Society, 2019, DOI: 10.1021/jacs.9b06790