Umhülltes Zinksulfid stabil und katalytisch aktiv

Atomlagen-Beschichtung für ZnS

Zinksulfid ist eines der weichsten Weißpigmente, das die Industrie verwendet, vergraut aber mit der Zeit, wenn man es nicht entsprechend vorbehandelt. Chemiker unter Federführung des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben nun einer UDE-Medienmitteilung vom 24.03.2021 zufolge einen Weg gefunden und am 02.02.2021 open access im Fachmagazin „Advanced Functional Materials publziert, wie das Pigment nicht nur seine strahlende Farbe behält, sondern zugleich als Katalysator eingesetzt werden könnte; zum Beispiel, um Sonnenlicht in nutzbare Energie umzusetzen.

Künstlerische Darstellung der Kern-Hülle-Strukturen – Bild © C. Reichenberger, UDE

Idealerweise ist ein Pigment stabil gegenüber Licht – speziell UV-Strahlung – und korrodiert nicht. Auch langfristig soll es seine weiße Farbe behalten. Das alles gelingt der Industrie mit Zinksulfid heute schon, allerdings ist das daraus entstehende Material nicht mehr geeignet, das photokatalytische Potenzial des Zinksulfids zu nutzen, weil keine Ladungsträger an der Partikeloberfläche zur Verfügung stehen.

In Kooperation mit dem Max-Planck-Institut für chemische Energiekonversion (Mülheim a.d. Ruhr) und der Duisburger Niederlassung des Industriepartners Venator haben UDE-Chemiker aus dem NanoEnergieTechnikZentrum (NETZ) nun eine Alternative entwickelt: „Wir haben Zinksulfid-Partikel mit einer nur drei Nanometer dünnen Schutzhülle aus Tonerde umhüllt – Atomlage für Atomlage“, erklärt Sven Reichenberger, Leiter der Katalysegruppe in der Technischen Chemie. Diese Kern-Hülle-Strukturen erwiesen sich in ersten Laborexperimenten als stabil gegenüber hoch-energetischer UV-Bestrahlung und korrosiven Medien.

Einsatz für nachhaltige Energieversorgung denkbar

Der zusätzliche Clou: Die Partikel sind in dieser Form grundsätzlich auch als Photokatalysatoren denkbar, also um chemische Reaktionen durch Licht auszulösen; zum Beispiel zum Abbau von Giftstoffen in Abwässern oder für die Aufspaltung von Wasser in Sauerstoff und Wasserstoff. „Dafür müssten Elektronen die Hülle aus Tonerde durchdringen können“, so Reichenberger,. „Das ist noch nicht der Fall, wir testen aber derzeit, ob sich das durch eine noch dünnere Schicht erreichen lässt.“ Gelingt dies, wären die Kern-Hülle-Strukturen hochinteressant, um zum Beispiel Abwasser photokatalytisch aufzubereiten oder Sonnenenergie in speicherfähige Energieträger umzusetzen.

->Quellen: