Jülicher Forschungsteam produziert Wasserstoff aus Gräsern

Der Kraft-Stoff aus dem Bioreaktor

Noch lebt unser Wirtschaftssystem von der Nutzung und Verbrennung von Kohlenstoffprodukten – Öl, Erdgas, Kohle. Dabei entsteht das für den Treibhauseffekt und damit für die globale Erwärmung verantwortliche CO2. Es sei Aufgabe der gesamten Menschheit, die Dekarbonisierung – also die Abkehr von Kohlenstoffprodukten – so schnell wie möglich umzusetzen, um die Folgen des Klimawandels abzumildern, so eine Medienmitteilung der FH Aachen vom . Am Campus Jülich der FH wird jetzt eine Methode erforscht, die zum flächendeckenden Einsatz von Wasserstoff als Treibstoff für unsere Wirtschaft beitragen kann.

Rohstoff für Wasserstoff: Stroh – Foto © Gerhard Hofmann für Solarify

Ein Problem ist die Speicherung und den Transport von Wasserstoff. Eine dezentrale Produktion eröffnet deswegen interessante Möglichkeiten für die flächendeckende Nutzung von Wasserstoff. Hier kommt ein Verfahren ins Spiel, das Forscher am Campus Jülich der FH Aachen nutzen. In einem interdisziplinären Projekt mit dem Titel „Elektrisch verstärkte mikrobielle Wasserstoffproduktion“ (eBioH2) arbeiten sie daran, Wasserstoff aus organischem Material – zum Beispiel Gräser oder Stroh – zu erzeugen. Beteiligt sind die drei Jülicher Fachbereiche Chemie und Biotechnologie, Medizintechnik und Technomathematik sowie Energietechnik, Hauptakteure sind Prof. Dr. Nils Tippkötter mit seinen Mitarbeiterinnen Simone Krafft und Berit Rothkranz sowie Prof. Torsten Wagner und Prof. Isabel Kuperjans.

Vergleichbar ist dieser Prozess auf den ersten Blick mit der Erzeugung von Biogas. In einem Bioreaktor findet ein Fermentationsprozess statt. Beim herkömmlichen Biogasverfahren wird Methan produziert, das zur Strom- und Kraftstofferzeugung eingesetzt werden kann. „Wir setzen Mikroorganismen ein, die bei 70 bis 80 Grad Celsius biogene Reststoffe direkt in Wasserstoff konvertieren können“, erläutert Prof. Tippkötter.

Im Labor arbeitet Doktorandin Berit Rothkranz gerade daran, die Parameter zu optimieren. Sie erforscht, welchen Einfluss pH-Wert, Temperatur und Druck auf die Fermentation haben. „Wir müssen die Apparate umrüsten, weil eine höhere Temperatur als in herkömmlichen Reaktoren anliegt“, sagt die Nachwuchsforscherin. Die Zusammensetzung des entstehenden Gasgemischs und damit die Prozessqualität untersucht sie mit einem Chromatographen.

„Im Labormaßstab funktioniert das Verfahren schon sehr gut“

Bei der Forschungsarbeit bringen die Jülicher Fachbereiche und Institute ihre jeweiligen Kompetenzen ein. Das Institut NOWUM-Energy verfügt über große Erfahrung bei der Analyse von Biogasprozessen. Die Institutsleiterin Prof. Kuperjans sagt: „Wir können die Ergebnisse unserer bisherigen Arbeit auf das neue Verfahren übertragen.“ Dies gelte etwa für die Frage, wie die organischen Rohstoffe beschaffen sein müssten, um einen stabilen Fermentationsprozess gewährleisten zu können. Bei den Themen Messtechnik und Steuerung liefert das Institut für Nano- und Biotechnologien (INB) wertvolle Unterstützung. „Im Labormaßstab funktioniert das Verfahren schon sehr gut“, erklärt INB-Mitarbeiter Prof. Wagner, „im nächsten Schritt wird es darum gehen, durch eine engmaschige Überwachung auch in größerem Maßstab verlässlich Wasserstoff zu produzieren.“

Die Pläne des eBioH2-Forschungsteams gehen aber auch noch in eine andere Richtung. Wenn man zusätzlich elektrische Energie über Elektroden in den Fermentationsprozess einspeist, steigt die Wasserstoffproduktion an. Denkbar wäre also, das Verfahren zur Speicherung von Energie zu nutzen – gerade in Kombination mit der Nutzung Erneuerbarer Energien ein reizvoller Gedanke. „Wir können bedarfsgerecht elektrische Überschussenergie aufnehmen und in Form von Wasserstoff speichern“, sagt Prof. Tippkötter.

Parallel suchen die Wissenschaftlerinnen und Wissenschaftler nach Partnerunternehmen aus der Wirtschaft, die das Verfahren einsetzen wollen. In kleinerem Maßstab wäre die Landwirtschaft ein mögliches Einsatzfeld. Dort sind organische Reststoffe vorhanden, die fermentiert werden könnten, zudem könnten Fahrzeuge und Maschinen mit Wasserstoff betrieben werden. Aber auch energieintensive Industrien – etwa in der Chemiebranche, bei der Stahl- und Zementproduktion – werden zukünftig voraussichtlich auf Wasserstoff als Energieträger setzen. Mit dem Forschungsprojekt will das Team am Puls der Zeit arbeiten – so hat die Bundesregierung mit ihrer nationalen Wasserstoffstrategie den Handlungsrahmen für den Themenbereich gesetzt. „Wir können dabei einen Baustein anbieten“, glaubt Prof. Tippkötter.

->Quellen: