Elektrischer Geschwindigkeits-Rekord

MP-Wissenschaftler erzeugen mit ultrakurzen Laserpulsen schnellste jemals gemessene elektrische Ströme in Festkörpern

Wissenschaftler am Max-Planck-Institut für Quantenoptik in Garching haben mit ultrakurzen Laserpulsen die schnellsten jemals erzeugten elektrischen Ströme in Festkörpern gemessen. Die Elektronen führten in einer Sekunde achtmillionen Milliarden Schwingungen aus, ein absoluter Rekord für die Steuerung von Elektronen in Festkörpern. Veröffentlicht jetzt in nature.

In der Elektronik gilt: Je kleiner, desto schneller. Manche Bauteile von Computern oder Mobilfunkgeräten bestehen so heute nur noch aus einer Handvoll von Atomen und lassen sich nicht mehr viel weiter verkleinern. Ein anderer wichtiger Faktor für die Leistungsfähigkeit elektronischer Geräte ist die Geschwindigkeit, mit der die elektrischen Ströme schwingen. Die Garchinger Wissenschaftler haben Ströme erzeugt, welche die Frequenz des sichtbaren Lichtes um mehr als das Zehnfache übertreffen. Dabei haben sie Elektronen von Siliziumdioxid mit kurzen Laserpulsen zum Schwingen gebracht. Die Leitfähigkeit des normalerweise isolierend wirkenden Materials stieg so um mehr als 19 Größenordnungen.

Seit mehr als hundert Jahren wollen Wissenschaftler konventionelle Stromquellen wie Batterien durch Licht ersetzen und so elektrische Ströme in Festkörpern erzeugen. Der Versuch, in Festkörpern durch Lichteinstrahlung elektrische Ströme hervorzurufen, blieb aber jahrzehntelang erfolglos. „Inzwischen können wir aber mit Lasern Materie immer besser kontrollieren und Lichtfelder immer genauer messen“, erklärt Eleftherios Goulielmakis, Leiter der Forschungsgruppe Attoelectronics am Garchinger Max-Planck-Institut.

Laser versetzen Elektronen in Festkörpern in extrem schnelle Schwingungen

Konventionelle elektronische Techniken können so schnelle elektrische Ströme weder erzeugen noch erfassen, denn in herkömmlichen Schaltkreisen werden die Elektronen von dem elektrischen Feld der Stromquellen, etwa Batterien, zu Schwingungen angestoßen. Auch wenn alle Elektronen anfangs der Kraft des Batteriefeldes folgen, stoßen sie gelegentlich mit langsameren Teilchen wie Atomen oder Ionen zusammen und verlieren dadurch ihre Synchronizität. Von intensiven Lichtfeldern dagegen werden die Elektronen in extrem kurzer Zeit beschleunigt. Deshalb geraten sie in Schwingungen und erzeugen elektrischen Strom, bevor ihnen andere Teilchen in die Quere kommen.

Die Forscher haben deshalb Laser für die Stromerzeugung verwendet. Diese können die Elektronen in Festkörpern in extrem schnelle Schwingungen versetzen. „Auch für die Messung der schnellen elektronischen Bewegung benutzen wir optische Techniken: Die im Siliziumdioxid synchron schwingenden Elektronen erzeugen nämlich extreme Ultraviolett-Strahlung. Es ist leichter, diese Strahlung zu messen als die Ströme direkt nachzuweisen“, sagt Manish Garg, einer der Autoren der Studie.

Die so nachgewiesenen Ströme sind etwa eine Million mal schneller als die in einem gängigen modernen Computerprozessor. Die Forscher wollen mit ihren Untersuchungen einerseits die physikalischen Grenzen ausloten. „Wenn sich Elektronen kohärent bewegen, strahlen sie Licht ab. Licht wiederum spielt in der Photonik die Schlüsselrolle. Deshalb können wir vielleicht zwei wichtige Bereiche der modernen Wissenschaft vereinigen: die Elektronik und die Photonik“, so Goulielmakis. Gleichzeitig könnte der Ansatz der Wissenschaftler den Weg für elektronische Geräte ebnen, die eine Million mal schneller als heutige sind. (OMS/HR)

->Quellen: